前言:本人是个DP蒟蒻,一直以来都特别害怕DP,终于鼓起勇气做了几道DP题,发现也没想象中的那么难?(又要被DP大神吊打了呜呜呜。

-----------------------

首先,区间DP是什么?

区间DP是一种以区间长度为阶段的DP方法。这种DP的解法较为固定,一般都是先枚举区间长度,再枚举左端点,根据左端点+长度推出右端点,然后枚举中间的断点进行转移。

伪代码:

for (int len=;len<=n;len++)
for (int i=;i<=n-len+;i++)
{
int j=i+len-;
for (int k=i;k<j;k++) f[i][j]=max(f[i][j],f[i][k]+f[k+][j]);
ans=max(ans,f[i][j]);
}

一句题外话:最短路算法中的佛洛依德算法的本质就是区间DP。

--------------------------

区间DP有两种形式(还是需要选手自己转化的。

一.环型DP

1.石子合并

经典题目,每个OI初学者必做的一道题。

首先我们要解决的是环的问题。我们可以将长度扩大到原来的二倍,破换成链。这是一种非常重要的思想,以后做题会经常遇到。

然后我们考虑区间DP的问题。每个区间都是由子区间合并而来,代价是两个子区间之和。所以我们不妨枚举区间内的断点,看哪种合并方式能得到最优解。

所以不难得出状态转移方程:

$f1[i][j]=min(f1[i][j],f1[i][k]+f1[k+1][j])$

$f2[i][j]=max(f2[i][j],f2[i][k]+f2[k+1][j])$

初始化即为$f[i][i]=a[i]$。

Code:

#include<bits/stdc++.h>
using namespace std;
int f1[][],f2[][],s[][];
int a[],sum[],n,ans1,ans2;
void init()
{
cin>>n;
for (int i=;i<=n;i++){
cin>>a[i];
a[i+n]=a[i];
}
for (int i=;i<=n*;i++)
{
sum[i]=sum[i-]+a[i];
f2[i][i]=;f1[i][i]=;
}
}
void dp()
{
for (int l=;l<=n;l++)
for (int i=;i<=*n-l+;i++)
{
int j=i+l-;
f1[i][j]=0x7fffffff/;f2[i][j]=;
for (int k=i;k<j;k++)
{
f1[i][j]=min(f1[i][j],f1[i][k]+f1[k+][j]);
f2[i][j]=max(f2[i][j],f2[i][k]+f2[k+][j]);
}
f1[i][j]+=sum[j]-sum[i-];
f2[i][j]+=sum[j]-sum[i-];
}
ans1=0x7fffffff/;ans2=;
for (int i=;i<=n;i++) ans1=min(ans1,f1[i][i+n-]);
for (int i=;i<=n;i++) ans2=max(ans2,f2[i][i+n-]);
}
int main()
{
init();
dp();
cout<<ans1<<endl<<ans2<<endl;
return ;
}

多边形

这也是一道环型DP,而且细节蛮多的,有兴趣不妨可以到我的博客里看一看。链接已备好。

二.链型DP

有些题太过于直白导致一眼看出状态转移方程,这里就不写了。直接上一道比较有难度的题。

关路灯

根据题中的提示,我们发现区间$[i,j]$的转移有两种情况:

1.直接顺着走下来。

2.走到某处折返。

又因为老张只能关他相邻的灯,所以我们得出状态转移方程:

$f[i][j][0]=min(f[i+1][j][0]+(pos[i+1]-pos[i])*(sum[n]-sum[j]+sum[i]),f[i+1][j][1]+(pos[j]-pos[i])*(sum[n]-sum[j]+sum[i]))$
$f[i][j][1]=min(f[i][j-1][1]+(pos[j]-pos[j-1])*(sum[i-1]+sum[n]-sum[j-1]),f[i][j-1][0]+(pos[j]-pos[i])*(sum[i-1]+sum[n]-sum[j-1]))$

其中前缀和要预处理,$0$表示在左端点,$1$表示在右端点。

Code:

#include<bits/stdc++.h>
using namespace std;
const int maxn=;
int f[maxn][maxn][],n,c,pos[maxn],w[maxn],sum[maxn];
int main()
{
scanf("%d%d",&n,&c);
for (int i=;i<=n;i++)
for (int j=;j<=n;j++) f[i][j][]=f[i][j][]=0x3f3f3f3f;
for (int i=;i<=n;i++) scanf("%d%d",&pos[i],&w[i]),sum[i]=w[i]+sum[i-];
f[c][c][]=f[c][c][]=;
for (int len=;len<=n;len++)
for (int i=;i<=n-len+;i++)
{
int j=i+len-;
f[i][j][]=min(f[i+][j][]+(pos[i+]-pos[i])*(sum[n]-sum[j]+sum[i]),f[i+][j][]+(pos[j]-pos[i])*(sum[n]-sum[j]+sum[i]));
f[i][j][]=min(f[i][j-][]+(pos[j]-pos[j-])*(sum[i-]+sum[n]-sum[j-]),f[i][j-][]+(pos[j]-pos[i])*(sum[i-]+sum[n]-sum[j-]));
}
printf("%d",min(f[][n][],f[][n][]));
return ;
}

后记:其实DP题目量还是比较大的,而且NOIp必考,所以要花大功夫在这上面。

区间DP 学习笔记的更多相关文章

  1. 区间dp学习笔记

    怎么办,膜你赛要挂惨了,下午我还在学区间\(dp\)! 不管怎么样,计划不能打乱\(4\)不\(4\).. 区间dp 模板 为啥我一开始就先弄模板呢?因为这东西看模板就能看懂... for(int i ...

  2. 数位DP学习笔记

    数位DP学习笔记 什么是数位DP? 数位DP比较经典的题目是在数字Li和Ri之间求有多少个满足X性质的数,显然对于所有的题目都可以这样得到一些暴力的分数 我们称之为朴素算法: for(int i=l_ ...

  3. DP学习笔记

    DP学习笔记 可是记下来有什么用呢?我又不会 笨蛋你以后就会了 完全背包问题 先理解初始的DP方程: void solve() { for(int i=0;i<;i++) for(int j=0 ...

  4. 树形DP 学习笔记

    树形DP学习笔记 ps: 本文内容与蓝书一致 树的重心 概念: 一颗树中的一个节点其最大子树的节点树最小 解法:对与每个节点求他儿子的\(size\) ,上方子树的节点个数为\(n-size_u\) ...

  5. 斜率优化DP学习笔记

    先摆上学习的文章: orzzz:斜率优化dp学习 Accept:斜率优化DP 感谢dalao们的讲解,还是十分清晰的 斜率优化$DP$的本质是,通过转移的一些性质,避免枚举地得到最优转移 经典题:HD ...

  6. 区间DP学习总结

    这段时间学习了区间DP,所以试着把学到的东西稍作总结,以备不时之需. 学习区间DP首先要弄清区间DP是为了解决什么问题:一般的DP主要是特征是一次往往只操作一个数值或者存储可以不连续的物品的状态(比如 ...

  7. dp学习笔记(各种dp,比较杂)

    HDU1176 中文题意不多解释了. 建一个二维dp数组,dp[ i ][ j ]表示第 i 秒落在 j 处一个馅饼.我们需要倒着DP,为什么呢,从 0秒,x=5处出发,假如沿数组正着往下走,终点到哪 ...

  8. 动态 DP 学习笔记

    不得不承认,去年提高组 D2T3 对动态 DP 起到了良好的普及效果. 动态 DP 主要用于解决一类问题.这类问题一般原本都是较为简单的树上 DP 问题,但是被套上了丧心病狂的修改点权的操作.举个例子 ...

  9. [总结] 动态DP学习笔记

    学习了一下动态DP 问题的来源: 给定一棵 \(n\) 个节点的树,点有点权,有 \(m\) 次修改单点点权的操作,回答每次操作之后的最大带权独立集大小. 首先一个显然的 \(O(nm)\) 的做法就 ...

随机推荐

  1. ant design pro 当中改变ant design 组件的样式和 数据管理

    ant design pro 简介 官网简介 链接 https://pro.ant.design/docs/getting-started-cn 项目结构 https://github.com/ant ...

  2. djangorestframework学习1-通过HyperlinkedModelSerializer,ModelViewSet,routers编写第一个接口

    前提首先安装了django,安装方式:pip install django 1. djangorestftamework安装: pip install djangorestframework 2. 创 ...

  3. Scala 基础(七):Scala 运算符

    1 算术运算符 算术运算符(arithmetic)是对数值类型的变量进行运算的,在Scala程序中使用的非常多. 细节说明: 1)对于除号“/”,它的整数除和小数除是有区别的:整数之间做除法时,只保留 ...

  4. python之爬虫(四)之 Requests库的基本使用

    什么是Requests Requests是用python语言基于urllib编写的,采用的是Apache2 Licensed开源协议的HTTP库如果你看过上篇文章关于urllib库的使用,你会发现,其 ...

  5. 接口测试框架实战(三)| JSON 请求与响应断言

    关注公众号,获取测试开发实战干货合辑.本文节选自霍格沃兹<测试开发实战进阶>课程教学内容. 数据驱动就是通过数据的改变驱动自动化测试的执行,最终引起测试结果的改变.简单来说,就是参数化在自 ...

  6. GitHub 热点速览 Vol.28:有品位程序员的自我修养

    作者:HelloGitHub-小鱼干 摘要:一个程序员除了技术好,还得品位高,有什么比一个高颜值的 GUI 更能体现你品味的呢?rocketredis 就是一个高颜值.简约的 Redis 管理界面,比 ...

  7. linux 安装superset

    背景说明 公司数据分析人员需要将日常监控分析数据进行可视化,在踩了一些坑之后,终于在业务环境中搭建成功superset,后续复现两次流程也是成功的,分享一波... 业务环境说明 操作系统:centos ...

  8. ffmpeg拉流长时间堵塞解决方式

    由于网络堵塞或者推流端错误导致拉流端没有流数据,ffmpeg主要会堵塞两个函数,直到下次流数据的到来 avformat_open_input() 该函数是在打开流数据时,如果没有这个流的ip,http ...

  9. antd4 源码学习 :表单

    Evernote Export 首先.vue 的数据流是双向的,而 react 的数据流是单向的. 这意味着什么? 这意味着,vue 中,子组件可以用 emit 把数据更新传给父组件.而 react ...

  10. html命名规则

    CSS样式命名 外套 wrap ------------------用于最外层 头部 header ----------------用于头部 主要内容 main ------------用于主体内容( ...