入门大数据---Spark_Transformation和Action算子
一、Transformation
spark 常用的 Transformation 算子如下表:
| Transformation 算子 | Meaning(含义) |
|---|---|
| map(func) | 对原 RDD 中每个元素运用 func 函数,并生成新的 RDD |
| filter(func) | 对原 RDD 中每个元素使用func 函数进行过滤,并生成新的 RDD |
| flatMap(func) | 与 map 类似,但是每一个输入的 item 被映射成 0 个或多个输出的 items( func 返回类型需要为 Seq )。 |
| mapPartitions(func) | 与 map 类似,但函数单独在 RDD 的每个分区上运行, func函数的类型为 Iterator<T> => Iterator<U> ,其中 T 是 RDD 的类型,即 RDD[T] |
| mapPartitionsWithIndex(func) | 与 mapPartitions 类似,但 func 类型为 (Int, Iterator<T>) => Iterator<U> ,其中第一个参数为分区索引 |
| sample(withReplacement, fraction, seed) | 数据采样,有三个可选参数:设置是否放回(withReplacement)、采样的百分比(fraction)、随机数生成器的种子(seed); |
| union(otherDataset) | 合并两个 RDD |
| intersection(otherDataset) | 求两个 RDD 的交集 |
| distinct([numTasks])) | 去重 |
| groupByKey([numTasks]) | 按照 key 值进行分区,即在一个 (K, V) 对的 dataset 上调用时,返回一个 (K, Iterable<V>) Note: 如果分组是为了在每一个 key 上执行聚合操作(例如,sum 或 average),此时使用 reduceByKey 或 aggregateByKey 性能会更好Note: 默认情况下,并行度取决于父 RDD 的分区数。可以传入 numTasks 参数进行修改。 |
| reduceByKey(func, [numTasks]) | 按照 key 值进行分组,并对分组后的数据执行归约操作。 |
| aggregateByKey(zeroValue,numPartitions)(seqOp, combOp, [numTasks]) | 当调用(K,V)对的数据集时,返回(K,U)对的数据集,其中使用给定的组合函数和 zeroValue 聚合每个键的值。与 groupByKey 类似,reduce 任务的数量可通过第二个参数进行配置。 |
| sortByKey([ascending], [numTasks]) | 按照 key 进行排序,其中的 key 需要实现 Ordered 特质,即可比较 |
| join(otherDataset, [numTasks]) | 在一个 (K, V) 和 (K, W) 类型的 dataset 上调用时,返回一个 (K, (V, W)) pairs 的 dataset,等价于内连接操作。如果想要执行外连接,可以使用 leftOuterJoin, rightOuterJoin 和 fullOuterJoin 等算子。 |
| cogroup(otherDataset, [numTasks]) | 在一个 (K, V) 对的 dataset 上调用时,返回一个 (K, (Iterable<V>, Iterable<W>)) tuples 的 dataset。 |
| cartesian(otherDataset) | 在一个 T 和 U 类型的 dataset 上调用时,返回一个 (T, U) 类型的 dataset(即笛卡尔积)。 |
| coalesce(numPartitions) | 将 RDD 中的分区数减少为 numPartitions。 |
| repartition(numPartitions) | 随机重新调整 RDD 中的数据以创建更多或更少的分区,并在它们之间进行平衡。 |
| repartitionAndSortWithinPartitions(partitioner) | 根据给定的 partitioner(分区器)对 RDD 进行重新分区,并对分区中的数据按照 key 值进行排序。这比调用 repartition 然后再 sorting(排序)效率更高,因为它可以将排序过程推送到 shuffle 操作所在的机器。 |
下面分别给出这些算子的基本使用示例:
1.1 map
val list = List(1,2,3)
sc.parallelize(list).map(_ * 10).foreach(println)
// 输出结果: 10 20 30 (这里为了节省篇幅去掉了换行,后文亦同)
1.2 filter
val list = List(3, 6, 9, 10, 12, 21)
sc.parallelize(list).filter(_ >= 10).foreach(println)
// 输出: 10 12 21
1.3 flatMap
flatMap(func) 与 map 类似,但每一个输入的 item 会被映射成 0 个或多个输出的 items( func 返回类型需要为 Seq)。
val list = List(List(1, 2), List(3), List(), List(4, 5))
sc.parallelize(list).flatMap(_.toList).map(_ * 10).foreach(println)
// 输出结果 : 10 20 30 40 50
flatMap 这个算子在日志分析中使用概率非常高,这里进行一下演示:拆分输入的每行数据为单个单词,并赋值为 1,代表出现一次,之后按照单词分组并统计其出现总次数,代码如下:
val lines = List("spark flume spark",
"hadoop flume hive")
sc.parallelize(lines).flatMap(line => line.split(" ")).
map(word=>(word,1)).reduceByKey(_+_).foreach(println)
// 输出:
(spark,2)
(hive,1)
(hadoop,1)
(flume,2)
1.4 mapPartitions
与 map 类似,但函数单独在 RDD 的每个分区上运行, func函数的类型为 Iterator<T> => Iterator<U> (其中 T 是 RDD 的类型),即输入和输出都必须是可迭代类型。
val list = List(1, 2, 3, 4, 5, 6)
sc.parallelize(list, 3).mapPartitions(iterator => {
val buffer = new ListBuffer[Int]
while (iterator.hasNext) {
buffer.append(iterator.next() * 100)
}
buffer.toIterator
}).foreach(println)
//输出结果
100 200 300 400 500 600
1.5 mapPartitionsWithIndex
与 mapPartitions 类似,但 func 类型为 (Int, Iterator<T>) => Iterator<U> ,其中第一个参数为分区索引。
val list = List(1, 2, 3, 4, 5, 6)
sc.parallelize(list, 3).mapPartitionsWithIndex((index, iterator) => {
val buffer = new ListBuffer[String]
while (iterator.hasNext) {
buffer.append(index + "分区:" + iterator.next() * 100)
}
buffer.toIterator
}).foreach(println)
//输出
0 分区:100
0 分区:200
1 分区:300
1 分区:400
2 分区:500
2 分区:600
1.6 sample
数据采样。有三个可选参数:设置是否放回 (withReplacement)、采样的百分比 (fraction)、随机数生成器的种子 (seed) :
val list = List(1, 2, 3, 4, 5, 6)
sc.parallelize(list).sample(withReplacement = false, fraction = 0.5).foreach(println)
1.7 union
合并两个 RDD:
val list1 = List(1, 2, 3)
val list2 = List(4, 5, 6)
sc.parallelize(list1).union(sc.parallelize(list2)).foreach(println)
// 输出: 1 2 3 4 5 6
1.8 intersection
求两个 RDD 的交集:
val list1 = List(1, 2, 3, 4, 5)
val list2 = List(4, 5, 6)
sc.parallelize(list1).intersection(sc.parallelize(list2)).foreach(println)
// 输出: 4 5
1.9 distinct
去重:
val list = List(1, 2, 2, 4, 4)
sc.parallelize(list).distinct().foreach(println)
// 输出: 4 1 2
1.10 groupByKey
按照键进行分组:
val list = List(("hadoop", 2), ("spark", 3), ("spark", 5), ("storm", 6), ("hadoop", 2))
sc.parallelize(list).groupByKey().map(x => (x._1, x._2.toList)).foreach(println)
//输出:
(spark,List(3, 5))
(hadoop,List(2, 2))
(storm,List(6))
1.11 reduceByKey
按照键进行归约操作:
val list = List(("hadoop", 2), ("spark", 3), ("spark", 5), ("storm", 6), ("hadoop", 2))
sc.parallelize(list).reduceByKey(_ + _).foreach(println)
//输出
(spark,8)
(hadoop,4)
(storm,6)
1.12 sortBy & sortByKey
按照键进行排序:
val list01 = List((100, "hadoop"), (90, "spark"), (120, "storm"))
sc.parallelize(list01).sortByKey(ascending = false).foreach(println)
// 输出
(120,storm)
(90,spark)
(100,hadoop)
按照指定元素进行排序:
val list02 = List(("hadoop",100), ("spark",90), ("storm",120))
sc.parallelize(list02).sortBy(x=>x._2,ascending=false).foreach(println)
// 输出
(storm,120)
(hadoop,100)
(spark,90)
1.13 join
在一个 (K, V) 和 (K, W) 类型的 Dataset 上调用时,返回一个 (K, (V, W)) 的 Dataset,等价于内连接操作。如果想要执行外连接,可以使用 leftOuterJoin, rightOuterJoin 和 fullOuterJoin 等算子。
val list01 = List((1, "student01"), (2, "student02"), (3, "student03"))
val list02 = List((1, "teacher01"), (2, "teacher02"), (3, "teacher03"))
sc.parallelize(list01).join(sc.parallelize(list02)).foreach(println)
// 输出
(1,(student01,teacher01))
(3,(student03,teacher03))
(2,(student02,teacher02))
1.14 cogroup
在一个 (K, V) 对的 Dataset 上调用时,返回多个类型为 (K, (Iterable<V>, Iterable<W>)) 的元组所组成的 Dataset。
val list01 = List((1, "a"),(1, "a"), (2, "b"), (3, "e"))
val list02 = List((1, "A"), (2, "B"), (3, "E"))
val list03 = List((1, "[ab]"), (2, "[bB]"), (3, "eE"),(3, "eE"))
sc.parallelize(list01).cogroup(sc.parallelize(list02),sc.parallelize(list03)).foreach(println)
// 输出: 同一个 RDD 中的元素先按照 key 进行分组,然后再对不同 RDD 中的元素按照 key 进行分组
(1,(CompactBuffer(a, a),CompactBuffer(A),CompactBuffer([ab])))
(3,(CompactBuffer(e),CompactBuffer(E),CompactBuffer(eE, eE)))
(2,(CompactBuffer(b),CompactBuffer(B),CompactBuffer([bB])))
1.15 cartesian
计算笛卡尔积:
val list1 = List("A", "B", "C")
val list2 = List(1, 2, 3)
sc.parallelize(list1).cartesian(sc.parallelize(list2)).foreach(println)
//输出笛卡尔积
(A,1)
(A,2)
(A,3)
(B,1)
(B,2)
(B,3)
(C,1)
(C,2)
(C,3)
1.16 aggregateByKey
当调用(K,V)对的数据集时,返回(K,U)对的数据集,其中使用给定的组合函数和 zeroValue 聚合每个键的值。与 groupByKey 类似,reduce 任务的数量可通过第二个参数 numPartitions 进行配置。示例如下:
// 为了清晰,以下所有参数均使用具名传参
val list = List(("hadoop", 3), ("hadoop", 2), ("spark", 4), ("spark", 3), ("storm", 6), ("storm", 8))
sc.parallelize(list,numSlices = 2).aggregateByKey(zeroValue = 0,numPartitions = 3)(
seqOp = math.max(_, _),
combOp = _ + _
).collect.foreach(println)
//输出结果:
(hadoop,3)
(storm,8)
(spark,7)
这里使用了 numSlices = 2 指定 aggregateByKey 父操作 parallelize 的分区数量为 2,其执行流程如下:

基于同样的执行流程,如果 numSlices = 1,则意味着只有输入一个分区,则其最后一步 combOp 相当于是无效的,执行结果为:
(hadoop,3)
(storm,8)
(spark,4)
同样的,如果每个单词对一个分区,即 numSlices = 6,此时相当于求和操作,执行结果为:
(hadoop,5)
(storm,14)
(spark,7)
aggregateByKey(zeroValue = 0,numPartitions = 3) 的第二个参数 numPartitions 决定的是输出 RDD 的分区数量,想要验证这个问题,可以对上面代码进行改写,使用 getNumPartitions 方法获取分区数量:
sc.parallelize(list,numSlices = 6).aggregateByKey(zeroValue = 0,numPartitions = 3)(
seqOp = math.max(_, _),
combOp = _ + _
).getNumPartitions

二、Action
Spark 常用的 Action 算子如下:
| Action(动作) | Meaning(含义) |
|---|---|
| reduce(func) | 使用函数func执行归约操作 |
| collect() | 以一个 array 数组的形式返回 dataset 的所有元素,适用于小结果集。 |
| count() | 返回 dataset 中元素的个数。 |
| first() | 返回 dataset 中的第一个元素,等价于 take(1)。 |
| take(n) | 将数据集中的前 n 个元素作为一个 array 数组返回。 |
| takeSample(withReplacement, num, [seed]) | 对一个 dataset 进行随机抽样 |
| takeOrdered(n, [ordering]) | 按自然顺序(natural order)或自定义比较器(custom comparator)排序后返回前 n 个元素。只适用于小结果集,因为所有数据都会被加载到驱动程序的内存中进行排序。 |
| saveAsTextFile(path) | 将 dataset 中的元素以文本文件的形式写入本地文件系统、HDFS 或其它 Hadoop 支持的文件系统中。Spark 将对每个元素调用 toString 方法,将元素转换为文本文件中的一行记录。 |
| saveAsSequenceFile(path) | 将 dataset 中的元素以 Hadoop SequenceFile 的形式写入到本地文件系统、HDFS 或其它 Hadoop 支持的文件系统中。该操作要求 RDD 中的元素需要实现 Hadoop 的 Writable 接口。对于 Scala 语言而言,它可以将 Spark 中的基本数据类型自动隐式转换为对应 Writable 类型。(目前仅支持 Java and Scala) |
| saveAsObjectFile(path) | 使用 Java 序列化后存储,可以使用 SparkContext.objectFile() 进行加载。(目前仅支持 Java and Scala) |
| countByKey() | 计算每个键出现的次数。 |
| foreach(func) | 遍历 RDD 中每个元素,并对其执行fun函数 |
2.1 reduce
使用函数func执行归约操作:
val list = List(1, 2, 3, 4, 5)
sc.parallelize(list).reduce((x, y) => x + y)
sc.parallelize(list).reduce(_ + _)
// 输出 15
2.2 takeOrdered
按自然顺序(natural order)或自定义比较器(custom comparator)排序后返回前 n 个元素。需要注意的是 takeOrdered 使用隐式参数进行隐式转换,以下为其源码。所以在使用自定义排序时,需要继承 Ordering[T] 实现自定义比较器,然后将其作为隐式参数引入。
def takeOrdered(num: Int)(implicit ord: Ordering[T]): Array[T] = withScope {
.........
}
自定义规则排序:
// 继承 Ordering[T],实现自定义比较器,按照 value 值的长度进行排序
class CustomOrdering extends Ordering[(Int, String)] {
override def compare(x: (Int, String), y: (Int, String)): Int
= if (x._2.length > y._2.length) 1 else -1
}
val list = List((1, "hadoop"), (1, "storm"), (1, "azkaban"), (1, "hive"))
// 引入隐式默认值
implicit val implicitOrdering = new CustomOrdering
sc.parallelize(list).takeOrdered(5)
// 输出: Array((1,hive), (1,storm), (1,hadoop), (1,azkaban)
2.3 countByKey
计算每个键出现的次数:
val list = List(("hadoop", 10), ("hadoop", 10), ("storm", 3), ("storm", 3), ("azkaban", 1))
sc.parallelize(list).countByKey()
// 输出: Map(hadoop -> 2, storm -> 2, azkaban -> 1)
2.4 saveAsTextFile
将 dataset 中的元素以文本文件的形式写入本地文件系统、HDFS 或其它 Hadoop 支持的文件系统中。Spark 将对每个元素调用 toString 方法,将元素转换为文本文件中的一行记录。
val list = List(("hadoop", 10), ("hadoop", 10), ("storm", 3), ("storm", 3), ("azkaban", 1))
sc.parallelize(list).saveAsTextFile("/usr/file/temp")
参考资料
入门大数据---Spark_Transformation和Action算子的更多相关文章
- 入门大数据---SparkSQL外部数据源
一.简介 1.1 多数据源支持 Spark 支持以下六个核心数据源,同时 Spark 社区还提供了多达上百种数据源的读取方式,能够满足绝大部分使用场景. CSV JSON Parquet ORC JD ...
- 入门大数据---Flink学习总括
第一节 初识 Flink 在数据激增的时代,催生出了一批计算框架.最早期比较流行的有MapReduce,然后有Spark,直到现在越来越多的公司采用Flink处理.Flink相对前两个框架真正做到了高 ...
- Spark_Transformation和Action算子
Transformation 和 Action 常用算子 一.Transformation 1.1 map 1.2 filter 1.3 flatMap ...
- 入门大数据---Spark_Streaming整合Flume
一.简介 Apache Flume 是一个分布式,高可用的数据收集系统,可以从不同的数据源收集数据,经过聚合后发送到分布式计算框架或者存储系统中.Spark Straming 提供了以下两种方式用于 ...
- 入门大数据---Hadoop是什么?
简单概括:Hadoop是由Apache组织使用Java语言开发的一款应对大数据存储和计算的分布式开源框架. Hadoop的起源 2003-2004年,Google公布了部分GFS和MapReduce思 ...
- 入门大数据---MapReduce-API操作
一.环境 Hadoop部署环境: Centos3.10.0-327.el7.x86_64 Hadoop2.6.5 Java1.8.0_221 代码运行环境: Windows 10 Hadoop 2.6 ...
- 入门大数据---Flume整合Kafka
一.背景 先说一下,为什么要使用 Flume + Kafka? 以实时流处理项目为例,由于采集的数据量可能存在峰值和峰谷,假设是一个电商项目,那么峰值通常出现在秒杀时,这时如果直接将 Flume 聚合 ...
- 入门大数据---安装ClouderaManager,CDH和Impala,Hue,oozie等服务
1.要求和支持的版本 (PS:我使用的环境,都用加粗标识了.) 1.1 支持的操作系统版本 操作系统 版本 RHEL/CentOS/OL with RHCK kernel 7.6, 7.5, 7.4, ...
- 入门大数据---Kylin是什么?
一.Kylin是什么? Apache Kylin是一个开源的.分布式的分析型数据仓库,提供Hadoop/Spark 上的SQL查询接口及多维度分析(OLAP)能力以支持超大规模的数据,最初由eBay开 ...
随机推荐
- PowerPC-object与elf中的符号引用
https://mp.weixin.qq.com/s/6snzjEpDT4uQuCI2Nx9VcQ 一. 符号引用 编译会先把每个源代码文件编译成object目标文件,然后把所有目标文件链接到一起 ...
- 我终于看懂了HBase,太不容易了...
前言 只有光头才能变强. 文本已收录至我的GitHub精选文章,欢迎Star:https://github.com/ZhongFuCheng3y/3y 在我还不了解分布式和大数据的时候已经听说过HBa ...
- ssh-copy-id to filter out any that...ERROR: Read from socket failed: Connection reset by peer
ssh-copy-id bigboss1 /usr/bin/ssh-copy-id: INFO: attempting to log in with the new key(s), to filter ...
- 数据库之 MySQL --- 下载、安装 及 概述(一)
个人博客网:https://wushaopei.github.io/ (你想要这里多有) 一 . MySql数据库的安装 1.图解MySQL程序结构 2.双击运行安装程序:以Win32位为例 ...
- Java实现 LeetCode 132 分割回文串 II(二)
132. 分割回文串 II 给定一个字符串 s,将 s 分割成一些子串,使每个子串都是回文串. 返回符合要求的最少分割次数. 示例: 输入: "aab" 输出: 1 解释: 进行一 ...
- Babel 7 安装与配置
Babel:帮我们把高级的语法(ES6)转为低级的语法 /* Babel 7.x版本 安装如下 (cnpm i @babel/cli -D) //Bab ...
- react后台管理系统路由方案及react-router原理解析
最近做了一个后台管理系统主体框架是基于React进行开发的,因此系统的路由管理,选用了react-router(4.3.1)插件进行路由页面的管理配置. 实现原理剖析 1.hash的方式 ...
- 单例模式之懒汉模式,懒汉模式之高效模式,DLC双判断模式
import java.util.concurrent.LinkedBlockingQueue; import java.util.concurrent.ThreadPoolExecutor; imp ...
- 深入理解PHP原理之Opcodes
Opcode是一种PHP脚本编译后的中间语言,就像Java的ByteCode,或者.NET的MSL. 举个例子,比如你写下了如下的PHP代码: <?php echo "Hello Wo ...
- IAT表
0X0 0 DLL介绍 DLL翻译器为动态链接库,原来不存在DLL的概念只有,库的概念,编译器会把从库中获取的二进制代码插入到应用程序中.在现在windows操作系统使用了数量庞大的库函数(进程,内存 ...