题目描述

  楼梯有N阶,上楼可以一步上一阶,也可以一步上二阶。

  编一个程序,计算共有多少种不同的走法。

分析与代码

  走n阶楼梯,无论是走一次走1阶还是2阶,总得迈出一步,

  所以求n阶楼梯的走法数F(n),可以看成是走F(n-1)和F(n-2)

  的和。

  而当楼梯只剩1阶时,就只有1种走法了;

       剩2阶时,可以选择1阶阶走,也可以直接走2阶,

       所以是2种走法;

  以此得出边界条件:n1 和 n2,可以很愉快的写出以下递归代码

#include<iostream>
using namespace std;
int F(int n){
if(n==1)return 1;
if(n==2)return 2;
return F(n-1)+F(n-2);
}
int main(){
int n;
cin>>n;
cout<<F(n)<<endl;
return 0;
}

  很明显,简单递归会出现很多重复计算。

  如:F(n-2)会被F(n-1-1)计算一次,被F(n-2)计算一次。

  而回观上面我们写的函数返回表达式很容易让我们联想到

  斐波那契的递推式,由此可以得出DP的状态转移方程:

     F(1)=1 , F(2)=2 , F(n)=F(n-1)+F(n-2)

  其中n≥3。

#include<iostream>
using namespace std;
const int N=100010;
int F[N];
int main(){
int n;
cin>>n;
F[1]=1;
F[2]=2;
for(int i=3;i<n;i++)F[i]=F[i-1]+F[i-2];
return 0;
}

  到这里你以为完了吗?不!并没有!!!

  (如果你是有用Java和Python这种不太需要考虑数据范围的当我没说)

  本人亲测,int的话n到1500就炸了,long long到2000也不行...

  所以这题要AC还得用高精度!!!

(未完待续......)

洛谷P1255 数楼梯的更多相关文章

  1. 洛谷 P1255 数楼梯

    P1255 数楼梯 题目描述 楼梯有N阶,上楼可以一步上一阶,也可以一步上二阶. 编一个程序,计算共有多少种不同的走法. 输入输出格式 输入格式: 一个数字,楼梯数. 输出格式: 走的方式几种. 输入 ...

  2. 洛谷——P1255 数楼梯

    题目描述 楼梯有N阶,上楼可以一步上一阶,也可以一步上二阶. 编一个程序,计算共有多少种不同的走法. 输入输出格式 输入格式: 一个数字,楼梯数. 输出格式: 走的方式几种. 输入输出样例 输入样例# ...

  3. Bzoj2120/洛谷P1903 数颜色(莫队)

    题面 Bzoj 洛谷 题解 考虑对操作离线后分块处理询问操作(莫队算法),将询问操作按照编号分块后左端点第一关键字,右端点第二关键字排序(分块大小为\(n^{\frac 23}\)),对于每一个询问操 ...

  4. 每日一练之大整数加法(P1255 数楼梯)

    走楼梯走一步还是两步的问题其实就是斐波那契数列(F(n)=F(n-1)+F(n-2),而在int型范围内存在45个相异的数,题干说明楼梯总数可以为5000,则考虑使用字符串进行存储.当两个数相加产生进 ...

  5. 洛谷 U3357 C2-走楼梯

    https://www.luogu.org/problem/show?pid=U3357 题目背景 在你成功地解决了上一个问题之后,方方方不禁有些气恼,于是他在楼梯上跳来跳去,想要你求出他跳的方案数. ...

  6. P1255 数楼梯 Python实现

    题目描述 楼梯有N阶,上楼可以一步上一阶,也可以一步上二阶. 编一个程序,计算共有多少种不同的走法. 输入格式 一个数字,楼梯数. 输出格式 走的方式几种. 输入输出样例 输入 #1 4 输出 #1 ...

  7. 洛谷-拼数-NOIP1998提高组复赛

    题目描述 Description 设有n个正整数(n≤20),将它们联接成一排,组成一个最大的多位整数. 例如:n=3时,3个整数13,312,343联接成的最大整数为:34331213 又如:n=4 ...

  8. 洛谷 P1028 数的计算【递推】

    P1028 数的计算 题目描述 我们要求找出具有下列性质数的个数(包含输入的自然数n): 先输入一个自然数n(n<=1000),然后对此自然数按照如下方法进行处理: 1.不作任何处理; 2.在它 ...

  9. (递推)codeVs1011 && 洛谷P1028 数的计算

    题目描述 Description 我们要求找出具有下列性质数的个数(包含输入的自然数n): 先输入一个自然数n(n<=1000),然后对此自然数按照如下方法进行处理: 1.          不 ...

随机推荐

  1. MyBatis入门知识汇总

     为什么要使用MyBatis? 我们都知道,在学习mybatis之前,要在Java中操作数据库,需要用到JDBC,但是在使用JDBC时会有许多缺陷. 比如: 1.使用时需要先进行数据库连接,不用后要立 ...

  2. R的安装以及包安装

        今天看论文,需要用到R语言的库,于是又折腾了半天..     其实并没有什么太大的问题,只是在第三方包的下载方面还有python中使用R方面遇到了问题: 第三方包的导入      其实在网上有 ...

  3. http://blog.itpub.net/28602568/viewspace-759789/

    varchar .varchar2.nvarchar.nvarchar2  -->存储可变的字符串 varchar .varchar2:varchar:汉字全角等字符占2字节,数字.字母均1个字 ...

  4. Spring MVC必须知道的执行流程

    Spring MVC的执行流程 一.名词解释 1.前端控制器(DispatcherServlet) 接收请求,响应结果,相当于转发器,中央处理器 2.处理器映射器(HandlerMapping) 根据 ...

  5. centos 删除文件提示 Operation not permitted

    如果文件上存在 i 标记,那肯定是删不掉的,同样这个文件也不能被编辑.可以进入 root 模式,去除这个标记: root@ubuntu:/home/barret/work# chattr -i 1.m ...

  6. JavaScript计时

    JavaScript计时分两种 setTimeout:程序在隔几秒后执行 语法: setTimeout(function(){要执行的程序},xxxx) setInterval:程序每隔几秒执行 语法 ...

  7. 附件1:setTimeout与闭包

    我在详细图解作用域链与闭包一文中的结尾留下了一个关于setTimeout与循环闭包的思考题. 利用闭包,修改下面的代码,让循环输出的结果依次为1, 2, 3, 4, 5 for (var i=1; i ...

  8. HomeLede 2020.5.27更新 UPnP+NAS+多拨+网盘+DNS优化+帕斯沃/Clash 无缝集成+软件包

    交流群:QQ 1030484865 电报 t.me/t_homelede   固件说明 基于Lede OpenWrt R2020.5.20版本(源码截止2020.5.27)及若干自行维护的软件包 结合 ...

  9. [leetcode] 并查集(Ⅲ)

    婴儿名字 题目[Interview-1707]:典型并查集题目. 解题思路 首先对 names 这种傻 X 字符串结构进行预处理,转换为一个 map,key 是名字,val 是名字出现的次数. 然后是 ...

  10. 透过 NestedScrollView 源码解析嵌套滑动原理

    NestedScrollView 是用于替代 ScrollView 来解决嵌套滑动过程中的滑动事件的冲突.作为开发者,你会发现很多地方会用到嵌套滑动的逻辑,比如下拉刷新页面,京东或者淘宝的各种商品页面 ...