java遍历树
如现有以下一颗树:A     B          B1               B11          B2               B22     C          C1               C11               C12          C2     D          D1               D11

第一种方式深度优先遍历 (最终返回的一棵压扁的树,依次从上往下)使用Stack,由于stack是先进后出,故实现方式为:
首先push一个初始节点到stack中,假定为A,
循环这个stack,只要不为空则循环不结束,从stack中pop出第一个元素,把次元素放到一个list中,作为树的返回结果显示,获取次元素的下一级子元素,如果有则把他们都push到stack中。
首先第一次进入循环的stack中只有A,把A元素从stack中pop出来后,第一个被放到list里,然后获取到A的一级子元素(BCD),把他们push到stack中,此时stack中有三个元素(BCD),进入第二次循环。
这次循环从stack中pop出第一个元素B(注:这里的BCD获取的先后顺序符合先进后出原则)把B元素从stack中pop出来后,第一个被放到list里,然后获取到A的一级子元素(B1B2),把他们push到stack中,此时stack中有元素(B1B2CD),进入第三次循环。
这次循环从stack中pop出的应该是B1或者B2中的一个,后面和上诉的循环一致。
获取的结果为A B B1 B11 B2 B22 C C1 C11 C12 C2 D D1 D11
第二种方式广度优先遍历使用list,由于list是集合,集合是先进先出,故实现方式为:
首先add一个初始节点到list中,假定为A,循环这个list,只要不为空,则循环不结束,从这个list中取出第一个元素即A放到result(假定也是一个list)中,并且remove这个元素。然后获取到A的一级子元素(BCD),把他们放到list中,此时list中有三个元素(BCD),进入第二次循环。
这次循环从list中取出第一个元素即B然后放到result中,并且remove这个元素。把B的一级子元素(B1B2)放入result中,此时list中元素为(CDB1B2),进入第三次循环。
这次循环和上两次一样,取出的第一个元素是C。
获取的结果为A B C D B1 B2 C1 C2 D1 B11 B22 C11 C12 D11

package com.order;
import java.util.ArrayList;
import java.util.Collection;
import java.util.List;
import java.util.Stack;
public class MytreeOrder {
private static List<String> allElement = new ArrayList<String>();
public static void setElement() {
allElement.add("A");
allElement.add("A1");
allElement.add("A2");
allElement.add("A3");
allElement.add("A4");
allElement.add("A11");
allElement.add("A21");
allElement.add("A22");
allElement.add("A41");
allElement.add("A42");
allElement.add("A111");
allElement.add("A421");
} public static void main(String[] args) {
setElement();
deepOrder("A");
broadOrder("A");
}
// 深度遍历
public static void deepOrder(String oneElement) { if (allElement.contains(oneElement)) {
Stack<String> s = new Stack<String>();
s.push(oneElement);
while (!s.isEmpty()) {
String now = s.pop();
StringBuffer t = getSpace(now);
System.out.println(t.toString() + now);
s.addAll(getChild("deep", now));
}
} }
// 根据传入的string元素来返回需要的空格
private static StringBuffer getSpace(String now) {
StringBuffer t = new StringBuffer("");
for (int i = 0; i < now.length(); i++) {
t.append(" ");
}
return t;
}
// 获取子元素
private static Collection<String> getChild(String mode, String oneElement) {
List<String> childs = new ArrayList<String>();
for (int i = 0; i < allElement.size(); i++) {
if (allElement.get(i).toString().length() == oneElement.length() + 1
&& (allElement.get(i).toString().substring(0,
oneElement.length()).equals(oneElement))) {
if (mode.equals("deep")) {
// 此处保证集合中最后一个元素是需要显示在当前层级中第一个展示的子节点(因为堆栈中是最后一个元素先出)
if (childs != null
&& childs.size() != 0
&& Integer.valueOf(allElement.get(i).toString()
.substring(1)) > Integer.valueOf(childs
.get(0).toString().substring(1))) {
childs.add(0, allElement.get(i));
} else {
childs.add(allElement.get(i));
}
} else {
if (childs != null
&& childs.size() != 0
&& Integer.valueOf(allElement.get(i).toString()
.substring(1)) < Integer.valueOf(childs
.get(0).toString().substring(1))) {
childs.add(0, allElement.get(i));
} else {
childs.add(allElement.get(i));
}
}
}
}
return childs;
}
// 广度遍历
private static void broadOrder(String oneElement) {
if (allElement.contains(oneElement)) {
List<String> l = new ArrayList<String>();
l.add(oneElement);
while (!l.isEmpty()) {
String now = l.get(0);
l.remove(0);
StringBuffer t = getSpace(now);
System.out.println(t.toString() + now);
l.addAll(getChild("broad", now));
}
}
}
}

java遍历树(深度遍历和广度遍历的更多相关文章

  1. lintcode :前序遍历和中序遍历树构造二叉树

    解题 前序遍历和中序遍历树构造二叉树 根据前序遍历和中序遍历树构造二叉树. 样例 给出中序遍历:[1,2,3]和前序遍历:[2,1,3]. 返回如下的树: 2 / \ 1 3 注意 你可以假设树中不存 ...

  2. LintCode-73.前序遍历和中序遍历树构造二叉树

    前序遍历和中序遍历树构造二叉树 根据前序遍历和中序遍历树构造二叉树. 注意事项 你可以假设树中不存在相同数值的节点 样例 给出中序遍历:[1,2,3]和前序遍历:[2,1,3]. 返回如下的树:    ...

  3. 多级树的深度遍历与广度遍历(Java实现)

    目录 多级树的深度遍历与广度遍历 节点模型 深度优先遍历 广度优先遍历 多级树的深度遍历与广度遍历 深度优先遍历与广度优先遍历其实是属于图算法的一种,多级树可以看做是一种特殊的图,所以多级数的深/广遍 ...

  4. Java多线程遍历文件夹,广度遍历加多线程加深度遍历结合

    复习IO操作,突然想写一个小工具,统计一下电脑里面的Java代码量还有注释率,最开始随手写了一个递归算法,遍历文件夹,比较简单,而且代码层次清晰,相对易于理解,代码如下:(完整代码贴在最后面,前面是功 ...

  5. 图的存储及遍历 深度遍历和广度遍历 C++代码实现

    /*图的存储及遍历*/ #include<iostream> using namespace std; //----------------------------------- //邻接 ...

  6. 遍历树节点(多层)的方法(java)

    前序遍历,后序遍历,广度遍历,深度遍历,遍历一级节点.以及按钮如何响应点击事件. import java.awt.*; import java.awt.event.*; import java.uti ...

  7. Java中树和树的几种常规遍历方法

    其中包含有先序遍历.中序遍历.后序遍历以及广度优先遍历四种遍历树的方法: package com.ietree.basic.datastructure.tree.binarytree; import ...

  8. c/c++连通图的遍历(深度遍历/广度遍历)

    连通图的遍历(深度遍历/广度遍历) 概念:图中的所有节点都要遍历到,并且只能遍历一次. 深度遍历 广度遍历 深度遍历 概念:从一个给定的顶点开始,找到一条边,沿着这条边一直遍历. 广度遍历 概念:从一 ...

  9. 重新整理数据结构与算法(c#)—— 图的深度遍历和广度遍历[十一]

    参考网址:https://www.cnblogs.com/aoximin/p/13162635.html 前言 简介图: 在数据的逻辑结构D=(KR)中,如果K中结点对于关系R的前趋和后继的个数不加限 ...

随机推荐

  1. java计算过G文件md5 值计算

    package io.bigdata; import java.io.File; import java.io.FileInputStream; import java.io.IOException; ...

  2. 连续改变Chrome浏览器窗口大小,可以导致内存泄漏

    最近在做响应式布局的页面,在开发测试过程中,为了看到页面在不同尺寸的窗口中的表现,因此要不停的拖动浏览器来改变其窗口大小:开始在Chrome浏览器下查看页面,拖动了几次,感觉电脑明显的卡了下来,刚开没 ...

  3. javaScript创建无边框iframe兼容ie

    <script>var m_iframe=document.createElement("iframe");m_iframe.scrolling="no&qu ...

  4. Node.js之【正则表达式函数之match、test、exec、search、split、replace使用详解】

    1. Match函数 使用指定的正则表达式函数对字符串惊醒查找,并以数组形式返回符合要求的字符串 原型:stringObj.match(regExp) 参数: stringObj 必选项,需要去进行匹 ...

  5. 简单3D翻转

    1.先上图~~~ 2.代码 html部分 <body> <div id="my3d"> <div id="box"> < ...

  6. Canvas开发笔记(不断更新)

    1.可以使用requestAnimationFrame函数代替setInterval.需要处理浏览器兼容问题: var w = window; requestAnimationFrame = w.re ...

  7. .NET基础之迭代器

    使用foreach循环是有IEnumerator接口来实现的,IEnumerator即实现了迭代器,在foreach中如何迭代一个集合arrayList呢? 调用arrayLis.GetEnumber ...

  8. IIs上MP4、及SVG格式加载失败解决方式

    部署项目是遇到网页播放mp4文件时候,MP4文件不能加载的问题.那是因为IIS上MIME类型中没有添加MP4的格式,添加一下即可. 解决方案: 1.在IIS上选中你的网站,然后点击右边的MIME类型, ...

  9. N皇后问题2

    Description Examine the  checkerboard below and note that the six checkers are arranged on the board ...

  10. To get TaskID's Integer ID value from the GUID in SharePoint workflow

    list.GetItemByUniqueId(guid).ID int itemID = spList.Items[new Guid("")].ID;