bzoj2669-局部极小值
题意
有一个 \(n\times m\) 的矩阵,其中每个数都是 \([1,n\times m]\) 中的一个,不会重复。有一些地方的值比周围的8个位置都小(如果有的话)。给出这些位置,求这样的矩阵有多少个。
\(n\le 4,m\le 7\) 。
分析
一个很关键的信息是局部极小值的点最多只有8个,以及每个数都不会重复。
这种有大小关系的填数问题,我们可以考虑从小到大填每个数。如果能够确定当前限制点的填写情况(是否填了),那么我们就能知道当前的决策有多少个可行位置。因为我们是从小到大填每个数,所以每个数的每个位置都是一种方案。
状态压缩当前限制的填写情况,预处理在一种填写状态下有多少个位置能填,我们就可以通过分当前这个数填在限制位置还是非限制位置进行dp。
然而会有一些不合法的情况,原因是没有限制的位置我们随便乱填之后可能会出现局部极小值,所以我们要把这些情况减掉。所以使用容斥原理减少限制——保证有某一些为局部极小值,其他不管,进行容斥。我们进行dfs,有哪些位置保证为局部极小值。
单次dp的复杂度为 \((2^Xnm)\) ,dfs剪枝能够通过。
代码
#include<bits/stdc++.h>
using namespace std;
typedef long long giant;
const int xx[]={-1,-1,-1,0,1,1,1,0};
const int yy[]={-1,0,1,1,1,0,-1,-1};
const int maxn=5;
const int maxm=8;
const int maxx=8;
const int maxs=1<<maxx;
const int q=12345678;
inline int Plus(int x,int y) {return ((giant)x+(giant)y)%q;}
inline int Multi(int x,int y) {return (giant)x*y%q;}
int n,m,ans=0,p[maxx][2],cnt[maxs],f[maxn*maxm][maxs],nm,ord=0;
bool a[maxn][maxm],mp[maxn][maxm];
inline int nxtx(int x,int y) {return x+(y==m);}
inline int nxty(int x,int y) {return y==m?1:y+1;}
void dp() {
int g=0,s;
for (int i=1;i<=n;++i) for (int j=1;j<=m;++j) if (a[i][j]) {
for (int k=0;k<8;++k) {
int x=i+xx[k],y=j+yy[k];
if (x>0 && y>0 && x<=n && y<=m && a[x][y]) return;
}
p[g][0]=i,p[g][1]=j;
++g;
}
s=1<<g;
memset(cnt,0,sizeof cnt);
for (int j=0;j<s;++j) {
memset(mp,0,sizeof mp);
for (int i=0;i<g;++i) if (!((j>>i)&1)) {
mp[p[i][0]][p[i][1]]|=true;
for (int k=0;k<8;++k) {
int x=p[i][0]+xx[k],y=p[i][1]+yy[k];
if (x>0 && y>0 && x<=n && y<=m) mp[x][y]|=true;
}
}
for (int i=1;i<=n;++i) for (int k=1;k<=m;++k) cnt[j]+=(!mp[i][k]);
}
memset(f,0,sizeof f);
f[0][0]=1;
for (int i=1;i<=nm;++i) for (int j=0;j<s;++j) {
if (cnt[j]>i-1) f[i][j]=Multi(f[i-1][j],cnt[j]-i+1);
for (int k=0;k<g;++k) if ((j>>k)&1) f[i][j]=Plus(f[i][j],f[i-1][j^(1<<k)]);
}
ans=Plus(ans,(g-ord)&1?q-f[nm][s-1]:f[nm][s-1]);
}
void dfs(int x,int y) {
if (x>n) {
dp();
return;
}
dfs(n+1,1);
for (int i=nxtx(x,y),j=nxty(x,y);i<=n;x=i,y=j,i=nxtx(x,y),j=nxty(x,y)) if (!a[i][j]) {
bool flag=true;
for (int k=0;k<8;++k) {
int x=i+xx[k],y=j+yy[k];
if (x>0 && y>0 && x<=n && y<=m && a[x][y]) {
flag=false;
break;
}
}
if (!flag) continue;
a[i][j]=true;
dfs(i,j);
a[i][j]=false;
}
}
int main() {
#ifndef ONLINE_JUDGE
freopen("test.in","r",stdin);
#endif
scanf("%d%d",&n,&m),nm=n*m;
for (int i=1;i<=n;++i) {
static char s[maxm+2];
scanf("%s",s+1);
for (int j=1;j<=m;++j) if (s[j]=='X') a[i][j]=true,++ord;
}
dfs(1,0);
printf("%d\n",ans);
return 0;
}
bzoj2669-局部极小值的更多相关文章
- BZOJ2669 [cqoi2012]局部极小值 状压DP 容斥原理
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ2669 题意概括 有一个n行m列的整数矩阵,其中1到nm之间的每个整数恰好出现一次.如果一个格子比所 ...
- [BZOJ2669] [cqoi2012]局部极小值
[BZOJ2669] [cqoi2012]局部极小值 Description 有一个n行m列的整数矩阵,其中1到nm之间的每个整数恰好出现一次.如果一个格子比所有相邻格子(相邻是指有公共边或公共顶点) ...
- 【BZOJ-2669】局部极小值 状压DP + 容斥原理
2669: [cqoi2012]局部极小值 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 561 Solved: 293[Submit][Status ...
- bzoj2669[cqoi2012]局部极小值 容斥+状压dp
2669: [cqoi2012]局部极小值 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 774 Solved: 411[Submit][Status ...
- 【bzoj2669】 cqoi2012—局部极小值
http://www.lydsy.com/JudgeOnline/problem.php?id=2669 (题目链接) 题意 给出一个$n*m$的整数矩阵,其中$[1,nm]$中的整数每个出现一次,有 ...
- 【bzoj2669】[cqoi2012]局部极小值 容斥原理+状压dp
题目描述 有一个n行m列的整数矩阵,其中1到nm之间的每个整数恰好出现一次.如果一个格子比所有相邻格子(相邻是指有公共边或公共顶点)都小,我们说这个格子是局部极小值. 给出所有局部极小值的位置,你的任 ...
- [BZOJ2669][CQOI2012]局部极小值:DP+容斥原理
分析 题目要求有且只有一些位置是局部极小值.有的限制很好处理,但是只有嘛,嗯...... 考虑子集反演(话说这个其实已经算是超集反演了吧还叫子集反演是不是有点不太合适),枚举题目给出位置集合的所有超集 ...
- bzoj2669 [cqoi2012]局部极小值 状压DP+容斥
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=2669 题解 可以发现一个 \(4\times 7\) 的矩阵中,有局部最小值的点最多有 \(2 ...
- bzoj 2669 [cqoi2012]局部极小值 DP+容斥
2669: [cqoi2012]局部极小值 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 838 Solved: 444[Submit][Status ...
- 【CQOI2012】局部极小值
[CQOI2012]局部极小值 Description 有一个\(n\)行\(m\)列的整数矩阵,其中\(1\)到\(nm\)之间的每个整数恰好出现一次.如果一个格子比所有相邻格子(相邻是指有公共边或 ...
随机推荐
- 20155307 2016-2017-2 《Java程序设计》第4周学习总结
20155307 2016-2017-2 <Java程序设计>第4周学习总结 教材学习内容总结 所谓继承,讲的就是出现很多很多相同的部分的话,就把这个部分变成"父类", ...
- 20145226夏艺华 网络对抗技术 EXP7 网络欺诈技术防范
20145226夏艺华 网络对抗技术 EXP7 网络欺诈技术防范 实践内容 本实践的目标理解常用网络欺诈背后的原理,以提高防范意识,并提出具体防范方法. · 简单应用SET工具建立冒名网站 · ett ...
- Zabbix学习之路(一)之Zabbix安装
一.Zabbix环境准备 [root@linux-node1 ~]# cat /etc/redhat-release CentOS Linux release (Core) [root@linux-n ...
- rpmforge
Could not retrieve mirrorlist http://mirrorlist.repoforge.org/el6/mirrors-rpmforge error was : PYCUR ...
- 微服务介绍及Asp.net Core实战项目系列之微服务介绍
0.目录 整体架构目录:ASP.NET Core分布式项目实战-目录 一.微服务选型 在做微服务架构的技术选型的时候,我们以“无侵入”和“社区活跃”为主要的考量点,将来升级为原子服务架构.量子服务架构 ...
- dotweb now released to Version 1.5
dotweb released to Version 1.5!!https://github.com/devfeel/dotweb What's new? 重要:go版本适配升级为1.9+ New f ...
- 打造linux下的source insight——vim插件安装使用总结
source insight是windows下的优秀编辑器,适合阅读管理代码,主要有以下功能: 查找函数,变量或者宏的定义. 查找函数,变量或者宏的引用位置. 查找函数被调用的位置 查找某个符号在工程 ...
- C++操作符优先级带来的错误
在刷LeetCode题目:190. 颠倒二进制位:颠倒给定的 32 位无符号整数的二进制位时,可以利用左移和右移操作符来实现数字翻转: 错误解法: class Solution { public: u ...
- java.lang.Boolean.valueOf(String s)
简单说,就是s为true(这四个字母大小写任意)时,返回值为true,否则为false public class one { public static void main(String[] args ...
- 11-Dockerfile构建镜像
用 Dockerfile 创建上节的 ubuntu-with-vi,其内容则为: FROM ubuntu RUN apt-get update && apt-get install v ...