bzoj2669-局部极小值
题意
有一个 \(n\times m\) 的矩阵,其中每个数都是 \([1,n\times m]\) 中的一个,不会重复。有一些地方的值比周围的8个位置都小(如果有的话)。给出这些位置,求这样的矩阵有多少个。
\(n\le 4,m\le 7\) 。
分析
一个很关键的信息是局部极小值的点最多只有8个,以及每个数都不会重复。
这种有大小关系的填数问题,我们可以考虑从小到大填每个数。如果能够确定当前限制点的填写情况(是否填了),那么我们就能知道当前的决策有多少个可行位置。因为我们是从小到大填每个数,所以每个数的每个位置都是一种方案。
状态压缩当前限制的填写情况,预处理在一种填写状态下有多少个位置能填,我们就可以通过分当前这个数填在限制位置还是非限制位置进行dp。
然而会有一些不合法的情况,原因是没有限制的位置我们随便乱填之后可能会出现局部极小值,所以我们要把这些情况减掉。所以使用容斥原理减少限制——保证有某一些为局部极小值,其他不管,进行容斥。我们进行dfs,有哪些位置保证为局部极小值。
单次dp的复杂度为 \((2^Xnm)\) ,dfs剪枝能够通过。
代码
#include<bits/stdc++.h>
using namespace std;
typedef long long giant;
const int xx[]={-1,-1,-1,0,1,1,1,0};
const int yy[]={-1,0,1,1,1,0,-1,-1};
const int maxn=5;
const int maxm=8;
const int maxx=8;
const int maxs=1<<maxx;
const int q=12345678;
inline int Plus(int x,int y) {return ((giant)x+(giant)y)%q;}
inline int Multi(int x,int y) {return (giant)x*y%q;}
int n,m,ans=0,p[maxx][2],cnt[maxs],f[maxn*maxm][maxs],nm,ord=0;
bool a[maxn][maxm],mp[maxn][maxm];
inline int nxtx(int x,int y) {return x+(y==m);}
inline int nxty(int x,int y) {return y==m?1:y+1;}
void dp() {
int g=0,s;
for (int i=1;i<=n;++i) for (int j=1;j<=m;++j) if (a[i][j]) {
for (int k=0;k<8;++k) {
int x=i+xx[k],y=j+yy[k];
if (x>0 && y>0 && x<=n && y<=m && a[x][y]) return;
}
p[g][0]=i,p[g][1]=j;
++g;
}
s=1<<g;
memset(cnt,0,sizeof cnt);
for (int j=0;j<s;++j) {
memset(mp,0,sizeof mp);
for (int i=0;i<g;++i) if (!((j>>i)&1)) {
mp[p[i][0]][p[i][1]]|=true;
for (int k=0;k<8;++k) {
int x=p[i][0]+xx[k],y=p[i][1]+yy[k];
if (x>0 && y>0 && x<=n && y<=m) mp[x][y]|=true;
}
}
for (int i=1;i<=n;++i) for (int k=1;k<=m;++k) cnt[j]+=(!mp[i][k]);
}
memset(f,0,sizeof f);
f[0][0]=1;
for (int i=1;i<=nm;++i) for (int j=0;j<s;++j) {
if (cnt[j]>i-1) f[i][j]=Multi(f[i-1][j],cnt[j]-i+1);
for (int k=0;k<g;++k) if ((j>>k)&1) f[i][j]=Plus(f[i][j],f[i-1][j^(1<<k)]);
}
ans=Plus(ans,(g-ord)&1?q-f[nm][s-1]:f[nm][s-1]);
}
void dfs(int x,int y) {
if (x>n) {
dp();
return;
}
dfs(n+1,1);
for (int i=nxtx(x,y),j=nxty(x,y);i<=n;x=i,y=j,i=nxtx(x,y),j=nxty(x,y)) if (!a[i][j]) {
bool flag=true;
for (int k=0;k<8;++k) {
int x=i+xx[k],y=j+yy[k];
if (x>0 && y>0 && x<=n && y<=m && a[x][y]) {
flag=false;
break;
}
}
if (!flag) continue;
a[i][j]=true;
dfs(i,j);
a[i][j]=false;
}
}
int main() {
#ifndef ONLINE_JUDGE
freopen("test.in","r",stdin);
#endif
scanf("%d%d",&n,&m),nm=n*m;
for (int i=1;i<=n;++i) {
static char s[maxm+2];
scanf("%s",s+1);
for (int j=1;j<=m;++j) if (s[j]=='X') a[i][j]=true,++ord;
}
dfs(1,0);
printf("%d\n",ans);
return 0;
}
bzoj2669-局部极小值的更多相关文章
- BZOJ2669 [cqoi2012]局部极小值 状压DP 容斥原理
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ2669 题意概括 有一个n行m列的整数矩阵,其中1到nm之间的每个整数恰好出现一次.如果一个格子比所 ...
- [BZOJ2669] [cqoi2012]局部极小值
[BZOJ2669] [cqoi2012]局部极小值 Description 有一个n行m列的整数矩阵,其中1到nm之间的每个整数恰好出现一次.如果一个格子比所有相邻格子(相邻是指有公共边或公共顶点) ...
- 【BZOJ-2669】局部极小值 状压DP + 容斥原理
2669: [cqoi2012]局部极小值 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 561 Solved: 293[Submit][Status ...
- bzoj2669[cqoi2012]局部极小值 容斥+状压dp
2669: [cqoi2012]局部极小值 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 774 Solved: 411[Submit][Status ...
- 【bzoj2669】 cqoi2012—局部极小值
http://www.lydsy.com/JudgeOnline/problem.php?id=2669 (题目链接) 题意 给出一个$n*m$的整数矩阵,其中$[1,nm]$中的整数每个出现一次,有 ...
- 【bzoj2669】[cqoi2012]局部极小值 容斥原理+状压dp
题目描述 有一个n行m列的整数矩阵,其中1到nm之间的每个整数恰好出现一次.如果一个格子比所有相邻格子(相邻是指有公共边或公共顶点)都小,我们说这个格子是局部极小值. 给出所有局部极小值的位置,你的任 ...
- [BZOJ2669][CQOI2012]局部极小值:DP+容斥原理
分析 题目要求有且只有一些位置是局部极小值.有的限制很好处理,但是只有嘛,嗯...... 考虑子集反演(话说这个其实已经算是超集反演了吧还叫子集反演是不是有点不太合适),枚举题目给出位置集合的所有超集 ...
- bzoj2669 [cqoi2012]局部极小值 状压DP+容斥
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=2669 题解 可以发现一个 \(4\times 7\) 的矩阵中,有局部最小值的点最多有 \(2 ...
- bzoj 2669 [cqoi2012]局部极小值 DP+容斥
2669: [cqoi2012]局部极小值 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 838 Solved: 444[Submit][Status ...
- 【CQOI2012】局部极小值
[CQOI2012]局部极小值 Description 有一个\(n\)行\(m\)列的整数矩阵,其中\(1\)到\(nm\)之间的每个整数恰好出现一次.如果一个格子比所有相邻格子(相邻是指有公共边或 ...
随机推荐
- 20155306 2016-2017-2 《Java程序设计》第十周学习总结
20155306 2016-2017-2 <Java程序设计>第十周学习总结 教材学习内容总结 Java和Android开发学习(网络) 网络概览 计算机网络体系结构的通信协议划分为七层, ...
- vim 中文乱码问题
编辑~/.vimrc文件,加上如下几行: set fileencodings=utf-8,ucs-bom,gb18030,gbk,gb2312,cp936 set termencoding=utf ...
- OpenStack入门篇(四)之KVM虚拟机介绍和管理
1.查看虚拟机,启动虚拟机 [root@linux-node1 ~]# virsh list --all Id Name State --------------------------------- ...
- python开发ftp服务器第一天(pyftpdlib)
学习了大约快一个月的python,现在开始有意识做一些项目.(我的新书<Python爬虫开发与项目实战>出版了,大家可以看一下样章) 据我了解,python现在更多的是用于自动化运维方面, ...
- python3 - 元组、集合
元组(tuple) 有序集合,不可变 a(1,2,3) a[0]获取第一个值 集合(set)增删改 >>> b = set('abc') >>> bset(['a' ...
- OpenWrt架设nginx php网站
参考 http://www.vinoca.org/2012/05/31/openwrt%E6%9E%B6%E8%AE%BEnginxphp%E7%BD%91%E7%AB%99/ 一.安装相关包 opk ...
- idea 模版之自定义类与方法注释
idea 模版之自定义类与方法注释 很多公司都有要求的代码注释规范,我们每新建类或者方法的时候从新复制粘贴很麻烦,而且容易粘错. 当然自定义模板还可以用到很多地方,比如系统自带的 sout就是syst ...
- 【转】AOE机制的DSL及其实际运用
AOE这个词的意思,我相信玩过WOW的人都不陌生,包括玩过LoL的也不会陌生,说穿了就是一个区域内发生效果(Area of effect).这里我们要讨论的就是关于一个适合于几乎所有游戏的AOE机制, ...
- 杂谈微服务架构下SSO&OpenAPI访问的方案。
本篇杂谈下微服务架构下WEB应用的浏览器与OpenAPI访问架构与方案.读者可对比传统架构下应用的此话话题的区别.或者有其它方案的欢迎交流
- 论文笔记:Visual Object Tracking based on Adaptive Siamese and Motion Estimation Network
Visual Object Tracking based on Adaptive Siamese and Motion Estimation 本文提出一种利用上一帧目标位置坐标,在本帧中找出目标可能出 ...