看到入度等于出度想到欧拉回路。

  我们把边都变成无向边,有一个结论是偶数度的点都可以变成出入度相等的点,而奇数点的不行,感性理解分类讨论一下就知道是对的。

  还有一个更好理解的结论是变成无向边后奇数点的个数一定只有偶数个,因为有一个奇数点就一定有另一个跟他对应。

  那么我们把奇数点凑成对连边,这样奇数点也变成了偶数点。无向图中所有的点的度数为偶数就存在欧拉回路,于是我们就可以跑一遍欧拉回路途中判断边是否需要返向来得到方案。

  卡常题T T(其实是我写太丑

#include<stdio.h>
#include<iostream>
#include<cstring>
#include<cstdlib>
using namespace std;
const int maxn=;
struct poi{int x,too,pre,pos;}e[maxn<<];
int n,m,x,y,cnt,tot,cntt;
int d[maxn],p[maxn],last[maxn],flag[maxn<<],v[maxn];
char buf[],*ptr=buf-;
inline int read()
{
char c=*++ptr;int s=,t=;
while(c<||c>)c=*++ptr;
while(c>=&&c<=){s=s*+c-'';c=*++ptr;}
return s*t;
}
inline void add(int x,int y,int z,int from){e[++tot].x=from;e[tot].too=y;e[tot].pos=z;e[tot].pre=last[x];last[x]=tot;}
void dfs(int x)
{
v[x]=;
for(register int i=last[x];i;last[x]=i=e[i].pre)
if(!flag[e[i].pos])
{
if(e[i].x==x)flag[e[i].pos]=;
else flag[e[i].pos]=;
dfs(e[i].too);
}
}
int main()
{
fread(buf,,sizeof(buf),stdin);
n=read();m=read();
for(register int i=;i<=m;++i)
{
x=read();y=read();
if(x==y)continue;
add(x,y,i,x);add(y,x,i,x);
d[x]++;d[y]++;
}
for(register int i=;i<=n;++i)if(d[i]&)p[++cnt]=i;
for(register int i=;i<=cnt;i+=)add(p[i],p[i+],(i>>)+m+,p[i]),add(p[i+],p[i],(i>>)+m+,p[i]);
for(register int i=;i<=n;++i)if(!v[i])dfs(i);
printf("%d\n",n-cnt);
for(int i=;i<=m;i++)if(flag[i]==)putchar('');else putchar('');
}

51nod1967 路径定向(欧拉回路+结论题)的更多相关文章

  1. 51nod1967 路径定向 Fleury

    题目传送门 题解 几乎是Fleury模板题. 一开始我们把图看作无向图,然后对于度为奇数的点增边,使得整个图的所有点都是偶数的. 然后跑一遍欧拉回路 Fleury ,所有的边就定向好了~ 代码 #in ...

  2. 51Nod 1967 路径定向 —— 欧拉回路

    题目:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1967 显然是欧拉回路问题,度数为奇数的点之间连边,跑欧拉回路就可以 ...

  3. 【题解】51nod1967 路径定向

    第一次写欧拉回路,实际上只要dfs下去就可以了,反正每条边都是要遍历一遍的…… 关键有两个性质:1.一个无向图存在欧拉回路,当且仅当该图所有顶点度数都为偶数,且该图是连通图.2.一个有向图存在欧拉回路 ...

  4. 51nod 1967 路径定向——欧拉回路

    题目:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1967 一共只会有偶数个奇数度的点.因为每多一条边,总度数加2. 把 ...

  5. 51nod 1967路径定向(dfs、欧拉回路)

    1967 路径定向 基准时间限制:1.2 秒 空间限制:262144 KB 分值: 80 难度:5级算法题 给出一个有向图,要求给每条边重定向,使得定向后出度等于入度的点最多,输出答案和任意一种方案 ...

  6. 【bzoj3997】[TJOI2015]组合数学 Dilworth定理结论题+dp

    题目描述 给出一个网格图,其中某些格子有财宝,每次从左上角出发,只能向下或右走.问至少走多少次才能将财宝捡完.此对此问题变形,假设每个格子中有好多财宝,而每一次经过一个格子至多只能捡走一块财宝,至少走 ...

  7. [codevs5578][咸鱼]tarjan/结论题

    5578 咸鱼  时间限制: 1 s  空间限制: 128000 KB   题目描述 Description 在广袤的正方形土地上有n条水平的河流和m条垂直的河流,发达的咸鱼家族在m*n个河流交叉点都 ...

  8. BZOJ_1367_[Baltic2004]sequence_结论题+可并堆

    BZOJ_1367_[Baltic2004]sequence_结论题+可并堆 Description Input Output 一个整数R Sample Input 7 9 4 8 20 14 15 ...

  9. [BZOJ3609][Heoi2014]人人尽说江南好 结论题

    Description 小 Z 是一个不折不扣的 ZRP(Zealot Round-game Player,回合制游戏狂热玩家), 最近他 想起了小时候在江南玩过的一个游戏.     在过去,人们是要 ...

随机推荐

  1. 初识JMM

    目录 what is JMM? JMM变量存储结构 JMM三大特性 原子性 可见性 有序性 java 堆栈 静态存储 栈式存储 堆式存储 JVM是啥 参考<Inside JVM> what ...

  2. CTF--zip伪加密

    刷题 一.BUGKU WEB 1. 变量1 知识点php两个$$是 可变变量,就是一个变量的变量名可以动态的设置和使用 $GLOBALS一个包含了全部变量的全局组合数组.变量的名字就是数组的键 < ...

  3. ZT-----用javascrip写一个区块链

    几乎每个人都听说过像比特币和以太币这样的加密货币,但是只有极少数人懂得隐藏在它们背后的技术.在这篇博客中,我将会用JavaScript来创建一个简单的区块链来演示它们的内部究竟是如何工作的.我将会称之 ...

  4. JavaScript里的循环方法之forEach,for-in,for-of

    JavaScript一种直译式脚本语言,是一种动态类型.弱类型.基于原型的语言,内置支持类型.它的解释器被称为JavaScript引擎,为浏览器的一部分,广泛用于客户端的脚本语言,最早是在HTML(标 ...

  5. 3.5星|《哈佛商学院最受欢迎的领导课》:讲给CEO的管理学常识、常见错误和改进方法

    哈佛商学院最受欢迎的领导课 英文版出版于2011年,还不算旧.中信2013年出过一版,这版估计是英文书版权过期后重新购买了再出版. 全书以写给CEO的口吻讲了许多管理常识,包含一些CEO容易犯的问题和 ...

  6. nodejs express 加载html模板

    在nodejs中如使用express框架,她默认的是ejs和jade渲染模板.由于我在使用的时候觉得她的代码书写方式很不爽还是想用html的形式去书写,于是我找了使用了html模板. 直接上代码,主要 ...

  7. Java接口获取系统配置信息

    Java获取当前运行系统的配置信息 接口:System.getProperty() 参数 描述 java.version Java运行时环境版本 java.vendor Java运行时环境供应商 ja ...

  8. 重构:越来越长的 switch ... case 和 if ... else if ... else

    在代码中,时常有就一类型码(Type Code)而展开的如 switch ... case 或 if ... else if ... else 的条件表达式.随着项目业务逻辑的增加及代码经年累月的修改 ...

  9. c# Webservice技术整理

    因为平常项目中使用webservice比较少,然后就将本来不太熟悉的webservice给忘记掉了.所以再次整理如下: 百度搜索关键词 :c# webservice 1. 联接地址: http://w ...

  10. Java 异常总结

    Throwablede类是 Java 语言中所有错误或异常的超类. 两个子类的实例,Error 和 Exception Error 是 Throwablede 的子类,用于指示合理的应用程序不应该试图 ...