题目来源: CodeForces
基准时间限制:6 秒 空间限制:131072 KB 分值: 40 难度:4级算法题
 收藏
 关注

两个士兵正在玩一个游戏,游戏开始的时候,第一个士兵为第二个士兵选一个正整数n。然后第二个士兵要玩尽可能多的轮数。每一轮要选择一个正整数x>1,且n要是x的倍数,然后用n/x去代替n。当n变成1的时候,游戏就结束了,第二个士兵所得的分数就是他玩游戏的轮数。

为了使游戏更加有趣,第一个士兵用 a! / b! 来表示n。k!表示把所有1到k的数字乘起来。

那么第二个士兵所能得到的最大分数是多少呢?

Input
单组测试数据。
第一行包含一个整数t (1 ≤ t ≤ 1,000,000),表示士兵玩游戏的次数。
接下来t行,每行包含两个整数a,b (1 ≤ b ≤ a ≤ 5,000,000)。
Output
对于每一组数据,输出第二个士兵能拿到的最多分数。
Input示例
2
3 1
6 3
Output示例
2

5
思路:
一个大于1的整数肯定有一些质数组成,由于分数要最多,也就是每次除能够整除的质数。
这样问题就转化为了,求b+1,b+2...,a之间有多少个质数。由于一个合数由质数相乘构成,所以
可以在欧拉筛的时候,处理一下每个数有多少个质数组成。在处理一下前缀和。

#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<string>
#include<time.h>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define INF 1000000001
#define ll long long
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
using namespace std;
const int MAXN = ;
int isnotprime[MAXN],prime[MAXN],cnt;
int a,b;
int ans[MAXN];
ll sum[MAXN];
void Init()
{
cnt = ;
memset(ans,,sizeof(ans));
memset(isnotprime,,sizeof(isnotprime));
for(int i = ; i <= MAXN - ; i++){
if(!isnotprime[i]){
ans[i] = ;
prime[cnt++] = i;
}
for(int j = ; j < cnt && 1LL * i * prime[j] < MAXN; j++){
isnotprime[i*prime[j]] = ;
ans[i*prime[j]] += ans[i] + ans[prime[j]];
if(i % prime[j] == )break;
}
}
sum[] = ;
sum[] = ;
for(int i = ; i <= MAXN - ; i++){
sum[i] = sum[i-] + ans[i];
}
}
int main()
{
int t;
Init();
cin >>t;
while(t--){
scanf("%d%d",&a,&b);
cout<<sum[a] - sum[b]<<endl;
}
return ;
}

51nod 1441 欧拉筛法的更多相关文章

  1. (数论 欧拉筛法)51NOD 1106 质数检测

    给出N个正整数,检测每个数是否为质数.如果是,输出"Yes",否则输出"No".   Input 第1行:一个数N,表示正整数的数量.(1 <= N &l ...

  2. [洛谷P3383][模板]线性筛素数-欧拉筛法

    Description 如题,给定一个范围N,你需要处理M个某数字是否为质数的询问(每个数字均在范围1-N内) Input&Output Input 第一行包含两个正整数N.M,分别表示查询的 ...

  3. 『素数 Prime判定和线性欧拉筛法 The sieve of Euler』

    素数(Prime)及判定 定义 素数又称质数,一个大于1的自然数,除了1和它自身外,不能整除其他自然数的数叫做质数,否则称为合数. 1既不是素数也不是合数. 判定 如何判定一个数是否是素数呢?显然,我 ...

  4. 欧拉筛法模板&&P3383 【模板】线性筛素数

    我们先来看欧拉筛法 •为什么叫欧拉筛呢?这可能是跟欧拉有关 •但是为什么叫线性筛呢?因为它的复杂度是线性的,也就是O(n),我们直接来看代码   #include<cstdio> #inc ...

  5. 素数判断-----埃氏筛法&欧拉筛法

    埃氏筛法 /* |埃式筛法| |快速筛选素数| |15-7-26| */ #include <iostream> #include <cstdio> using namespa ...

  6. 2018牛客网暑期ACM多校训练营(第三场) H - Diff-prime Pairs - [欧拉筛法求素数]

    题目链接:https://www.nowcoder.com/acm/contest/141/H 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 262144K,其他语言524288K ...

  7. 【模板】埃拉托色尼筛法 && 欧拉筛法 && 积性函数

    埃拉托色尼筛法 朴素算法 1 vis[1]=1; 2 for (int i=2;i<=n;i++) 3 if (!vis[i]) 4 { 5 pri[++tot]=i; 6 for (int j ...

  8. 素数筛总结篇___Eratosthenes筛法和欧拉筛法(*【模板】使用 )

    求素数 题目描述 求小于n的所有素数的数量. 输入 多组输入,输入整数n(n<1000000),以0结束. 输出 输出n以内所有素数的个数. 示例输入 10 0 示例输出 4 提示 以这道题目为 ...

  9. [51Nod 1244] - 莫比乌斯函数之和 & [51Nod 1239] - 欧拉函数之和 (杜教筛板题)

    [51Nod 1244] - 莫比乌斯函数之和 求∑i=1Nμ(i)\sum_{i=1}^Nμ(i)∑i=1N​μ(i) 开推 ∑d∣nμ(d)=[n==1]\sum_{d|n}\mu(d)=[n== ...

随机推荐

  1. tyvj[1087]sumsets

    描述     正整数N可以被表示成若干2的幂次之和.例如,N = 7时,共有下列6种不同的方案:1) 1+1+1+1+1+1+12) 1+1+1+1+1+23) 1+1+1+2+24) 1+1+1+4 ...

  2. 5.Transact-SQL编程

    转载于:http://www.cnblogs.com/hoojo/archive/2011/07/19/2110862.html Transact-SQL中的存储过程,非常类似于Java语言中的方法, ...

  3. Python之路【第十一篇】前端初识之HTML

    HTML HTML解释: HTML是英文Hyper Text Mark-up Language(超文本标记语言)的缩写,他是一种制作万维网页面标准语言(标记).相当于定义统一的一套规则,大家都来遵守他 ...

  4. iptables实现负载均衡

    例子: iptables -t nat -A PREROUTING -d 10.192.0.65/32 -p tcp -m tcp --dport 8080 -m statistic --mode n ...

  5. 【腾讯GAD暑期训练营游戏程序开发】游戏中的动画系统作业

    游戏中的动画系统作业说明文档   一.实现一个动画状态机:至少包含3组大的状态节点

  6. 最清晰的Android多屏幕适配方案

    问题的引入 当您的Android应用即将发布的时候,如果你想让更多的用户去使用你的应用,摆在工程师面前的一个重要问题就是如何让你的应用能在各种各样的终端上运行,这里的各种各样首当其冲的就是不同的屏幕分 ...

  7. Mininet的内部实现原理简介

    原文发表在我的博客主页,转载请注明出处. 前言 之前模拟仿真网络一直用的是Mininet,包括写了一些关于Mininet安装,和真实网络相连接,Mininet简历拓扑的博客,但是大多数都是局限于具体步 ...

  8. 使用markdown编辑evernote(印象笔记)的常用方法汇总

    原文发表在我的博客主页,转载请注明出处 前言 正所谓工欲善其事,必先利其器,本文将要介绍的evernote和markdown都是程序员必备的工具 虽然国内现在有了很多evernote的替代品,做的比较 ...

  9. 拦截PHP各种异常和错误,发生致命错误时进行报警,万事防患于未然

    在日常开发中,大多数人的做法是在开发环境时开启调试模式,在产品环境关闭调试模式.在开发的时候可以查看各种错误.异常,但是在线上就把错误显示的关闭. 上面的情形看似很科学,有人解释为这样很安全,别人看不 ...

  10. fdisk分区硬盘并shell脚本自动化

    最近工作需要用到对硬盘进行shell脚本自动化分区和mount的操作,google了一些资料,下面做个总结. 如果硬盘没有进行分区(逻辑分区或者扩展分区,关于两者概念,自行google),我们将无法将 ...