【CodeForces 261B】Maxim and Restaurant(DP,期望)
第一种解法是$O(n^3*p)$的:
f[i][j][k]表示前i个人进j个人长度为k有几种方案(排列固定为123..n时)。
$f[i][j][k]=f[i-1][j][k]+f[i-1][j-1][k-a[i]]$
最外层枚举t表示被卡的那个人。i=t时不加上f[i-1][j-1][k-a[i]]。
$ans={{(\sum f[n][j][k]*j*j!*(n-1-j)!)+(\sum f[n][n][k]*n)}}/(n!)$。
可以看看这篇题解
#include<cstdio>
#include<cstring>
#define N 55
int n,p,a[N];
double f[N][N][N],ans,c[N]= {1};
int main(){
scanf("%d",&n);
for(int i=1; i<=n; i++){
scanf("%d",&a[i]);
c[i]=c[i-1]*i;
}
scanf("%d",&p);
for(int t=0; t<=n; t++){
memset(f,0,sizeof f);
f[0][0][0]=1;
for(int i=1; i<=n; i++)
for(int j=0; j<=i; j++)
for(int k=0; k<=p; k++){
f[i][j][k]=f[i-1][j][k];
if(j>=1&&t!=i&&k>=a[i])f[i][j][k]+=f[i-1][j-1][k-a[i]];
}
for(int j=1; j<n; j++)
for(int k=1; k<=p; k++)if(a[t]+k>p)
ans+=c[j]*c[n-1-j]/c[n]*f[n][j][k]*j;
for(int k=1; k<=p; k++)ans+=f[n][n][k]*n;
}
printf("%lf",ans);
}
还可以更高效,$O(n^2*p)$
参考题解
f[i][j][k]表示前i个人至少进j个人这j个人的长度和为k有几种方案(排列为123..n时)。
那么$ans=(\sum f[n][j][k]*j!*(n-j)!/(n!)$。
我原来不太理解为什么至少j个人就是这么推,问了下队友,说是因为没有卡后面的,所以有可能可以进更多人。
其实第一种方法算的f也是至少j个人,然后在后面累加ans时再卡住第j+1个人。
并且可以用滚动数组优化为2维数组。
#include<cstdio>
#define N 51
int n,a[N],p;
double fac[N]= {1},f[N][N],tol,ans;
int main()
{
scanf("%d",&n);
for(int i=1; i<=n; i++)
{
scanf("%d",a+i);
fac[i]=fac[i-1]*i;
tol+=a[i];
}
scanf("%d",&p);
if(tol<=p)
{
printf("%d",n);
return 0;
}
f[0][0]=1;
for(int i=1; i<=n; i++)
for(int j=n-1; j>=0; j--)
for(int k=0; k+a[i]<=p; k++)
f[j+1][k+a[i]]+=f[j][k];
for(int j=1; j<=n; j++)
for(int k=0; k<=p; k++)
ans+=f[j][k]*fac[j]*fac[n-j];
ans/=fac[n];
printf("%lf",ans);
}
【CodeForces 261B】Maxim and Restaurant(DP,期望)的更多相关文章
- codeforces 261B Maxim and Restaurant(概率DP)
B. Maxim and Restaurant time limit per test 2 seconds memory limit per test 256 megabytes input stan ...
- CodeForces - 261B Maxim and Restaurant
http://codeforces.com/problemset/problem/261/B 题目大意:给定n个数a1-an(n<=50,ai<=50),随机打乱后,记Si=a1+a2+a ...
- CodeForces 261B Maxim and Restaurant 解法汇总
题意:给定n个数a1-an(n<=50,ai<=50),随机打乱后,记Si=a1+a2+a3-+ai,问满足Si<=p的i的最大值的期望.(p<=50) 这道题在网上有一些不同 ...
- Codeforces Round #160 (Div. 2) D. Maxim and Restaurant(DP)
题目链接 想了挺久,枚举每一件物品,当做关键物品,假设再加这一件物品,就>=c了,把剩下的物品背一下包,dp[i][j]表示i个物品可以组成重量j的个数. 这样就可以知道前面放i件,后边肯定放n ...
- Codeforces 123E Maze(树形DP+期望)
[题目链接] http://codeforces.com/problemset/problem/123/E [题目大意] 给出一棵,给出从每个点出发的概率和以每个点为终点的概率,求出每次按照dfs序从 ...
- cf 261B.Maxim and Restaurant
什么什么期望的,不会! (题解http://blog.sina.com.cn/s/blog_140e100580102wj4e.html(看不懂)) #include<bits/stdc++.h ...
- [CF697D]Puzzles 树形dp/期望dp
Problem Puzzles 题目大意 给一棵树,dfs时随机等概率选择走子树,求期望时间戳. Solution 一个非常简单的树形dp?期望dp.推导出来转移式就非常简单了. 在经过分析以后,我们 ...
- Problem Arrangement ZOJ - 3777(状压dp + 期望)
ZOJ - 3777 就是一个入门状压dp期望 dp[i][j] 当前状态为i,分数为j时的情况数然后看代码 有注释 #include <iostream> #include <cs ...
- CodeForces - 28C Bath Queue 概率与期望
我概率期望真是垃圾--,这题搞了两个钟头-- 题意 有\(n\)个人,\(m\)个浴室,每个浴室里有\(a_i\)个浴缸.每个人会等概率随机选择一个浴室,然后每个浴室中尽量平分到每个浴缸.问期望最长排 ...
- [BZOJ 3625] [Codeforces 438E] 小朋友的二叉树 (DP+生成函数+多项式开根+多项式求逆)
[BZOJ 3625] [Codeforces 438E] 小朋友的二叉树 (DP+生成函数+多项式开根+多项式求逆) 题面 一棵二叉树的所有点的点权都是给定的集合中的一个数. 让你求出1到m中所有权 ...
随机推荐
- Hibernate总结3
一,对象的四种状态 临时状态: 与数据库没有对应,跟Session没有关联. 一般是新new出的对象. 持久化状态: 对象在Session的管理之中,最终会有对应的数据库记录.save saveoru ...
- Meet Python: little notes 2
From this blog I will turn to Markdown for original writing. Source: http://www.liaoxuefeng.com/ ♥ l ...
- 正在编译转换: 未能找到元数据文件 EntityFramework.dll
错误 1 正在编译转换: 未能找到元数据文件“C:\Program Files (x86)\Microsoft Visual Studio 11.0\Common7\Tools\..\IDE\Enti ...
- 资源搜集:Git精品文章推荐,常年更新
以下放置的是搜集到的Git精品文章,常年更新: Git 常用命令详解(二) Git版本控制软件结合GitHub从入门到精通常用命令学习手册 Pro Git(中文版)
- 移动端调试利器 JSConsole 介绍
先看这篇文章 Web应用调试:现在是Weinre和JSConsole,最终会是WebKit的远程调试协议. 我们先不看未来,从此文可见,当下的移动端调试还是 Weinre 和 JSConsole 的天 ...
- cocos2dx-2.2.1 免 Cygwin 环境搭建(Win8+VS2013+ADT Bundle+android-ndk-r9c)
1.下载 ADT Bundle 解压到D盘 D:\adt-bundle-windows-x86_64-20131030: 2.下载 NDK-R9C,解压到 ADT 目录下:D:\adt-bundle- ...
- How to create a batch of VMs with PowerShell
Foreword When we do some test that need several VMs, we can use PowerShell script or CmdLets to impl ...
- matlab 中randn randi rand randsrc的用法以及区别
1,rand 生成均匀分布的伪随机数.分布在(0~1)之间 主要语法:rand(m,n)生成m行n列的均匀分布的伪随机数 rand(m,n,'double') ...
- android之远程启动服务
启动远程服务和隐式启动Activity一样 实现一个服务 为了演示方便,该服务是一个空服务 package xidian.dy.com.chujia; import android.app.Servi ...
- C 语言学习的第 01 课:先来聊聊计算机吧
各位同学,新学期,我就是你们的助教了.我的个人信息,你们的任课老师都已经介绍过了,所以我这里也就不再啰嗦.下面,来聊聊今天的话题:“先来谈谈计算机吧”. 想必看到这个题目,你们大家一定是不愿意点击进来 ...