此课程(MOOCULUS-2 "Sequences and Series")由Ohio State University于2014年在Coursera平台讲授。

PDF格式教材下载 Sequences and Series

本系列学习笔记PDF下载(Academia.edu) MOOCULUS-2 Solution

Summary

  • Suppose that $\left(a_n\right)$ is a sequence. To say that $\lim_{n\to \infty}a_n=L$ is to say that for every $\varepsilon>0$, there is an $N > 0$, so that whenever $n>N$, we have $|a_n-L| < \varepsilon$. If $\lim_{n\to\infty}a_n=L$ we say that the sequence converges. If there is no finite value $L$ so that $\lim_{n\to\infty}a_n = L$, then we say that the limit does not exist, or equivalently that the sequence diverges.
  • Suppose $(a_n)$ is a sequence with initial index $N$, and suppose we have a sequence of integers $(n_i)$ so that $$N \leq n_1 < n_2 < n_3 < n_4 < n_5 < \cdots$$ Then the sequence $(b_i)$ given by $b_i = a_{n_i}$ is said to be a subsequence of the sequence $a_n$.
  • If $(b_i)$ is a subsequence of the convergent sequence $(a_n)$, then $$\lim_{i \to \infty} b_i = \lim_{n \to \infty} a_n$$
  • Suppose $(b_i)$ and $(c_i)$ are convergent subsequences of the sequence $(a_n)$, but $$\lim_{i \to \infty} b_i \neq \lim_{i \to \infty} c_i.$$ Then the sequence $(a_n)$ does not converge.
  • Squeeze Theorem: Suppose there is some $N$ so that for all $n > N$, it is the case that $a_n \le b_n \le c_n$. If $$\lim_{n\to\infty}a_n=\lim_{n\to\infty}c_n=L$$ then $\lim_{n\to\infty}b_n=L$.
  • $$\lim_{n\to\infty}|a_n|=0$$ if and only if $$\lim_{n\to\infty}a_n=0$$
  • The sequence $a_n = r^n$ converges when $-1 < r \le 1$, and diverges otherwise. In symbols, $$\lim_{n\to\infty} r^n=\begin{cases}0& \mbox{if $-1 < r < 1$,} \\ 1& \mbox{if $r=1$, and} \\ \mbox{does not exist} & \mbox{if $r \leq -1$ or $r > 1$.} \end{cases}$$
  • A sequence is called increasing (or sometimes strictly increasing) if $a_n < a_{n+1}$ for all $n$. It is called non-decreasing if $a_n\le a_{n+1}$ for all $n$. Similarly a sequence is decreasing (or, by some people, strictly decreasing) if $a_n > a_{n+1}$ for all $n$ and non-increasing if $a_n\ge a_{n+1}$ for all $n$.
  • If a sequence is increasing, non-decreasing, decreasing, or non-increasing, it is said to be monotonic.
  • A sequence $(a_n)$ is bounded above if there is some number $M$ so that for all $n$, we have $a_n\le M$. Likewise, a sequence $(a_n)$ is bounded below if there is some number $M$ so that for every $n$, we have $a_n\ge M$. If a sequence is both bounded above and bounded below, the sequence is said to be bounded.
  • If the sequence $a_n$ is bounded and monotonic, then $\lim_{n \to \infty} a_n$ exists. In short, bounded monotonic sequences converge.

Exercises

1. Compute $$\lim_{x\to\infty} x^{1/x}$$

Solution:

$$\lim_{x\to\infty} x^{1/x}=\lim_{x\to\infty}(e^{\ln x})^{1/x} =\lim_{x\to\infty}e^{\frac{\ln x}{x}}$$ By L'Hopital's rule, we have $$\lim_{x\to\infty}\frac{\ln x}{x}=\lim_{x\to\infty}\frac{1/x}{1}=0$$ Thus, the result is $$\lim_{x\to\infty} x^{1/x}=e^0=1$$

2. Use the squeeze theorem to show that $$\lim_{n\to\infty} {n!\over n^n}=0$$

Solution:

$$0<\frac{n!}{n^n}=\frac{1}{n}\cdot\frac{2}{n}\cdot\cdots\cdots\cdot\frac{n}{n} < \frac{1}{n}\to0\ (n\to\infty)$$ According to the squeeze theorem, $$\lim_{n\to\infty} {n!\over n^n}=0$$

3. Determine whether $$\{\sqrt{n+47}-\sqrt{n}\}_{n=0}^\infty$$ converges or diverges. If it converges, compute the limit.

Solution:

$$\sqrt{n+47}-\sqrt{n}=\frac{47}{\sqrt{n+47}+\sqrt{n}}$$ Hence it is decreasing. On the other hand, $$\sqrt{n+47}-\sqrt{n}\ge0$$ that is, it is bounded below. Thus, it is convergent. And we have $$\lim_{x\to\infty}(\sqrt{n+47}-\sqrt{n})=\lim_{n\to\infty}\frac{47}{\sqrt{n+47}+\sqrt{n}}=0$$ 4. Determine whether $$\left\{{n^2+1\over (n+1)^2}\right\}_{n=0}^\infty$$ converges or diverges. If it converges, compute the limit.

Solution:

$${(n+1)^2\over n^2+1}=1+{2n\over n^2+1}$$ which is decreasing. Thus $${n^2+1\over (n+1)^2}$$ is increasing. On the other hand, $${n^2+1\over (n+1)^2}={n^2+1\over n^2+2n+1} < 1$$ which means it is bounded above. Thus it is convergent. And we have $$\lim_{n\to\infty}{n^2+1\over (n+1)^2}=\lim_{n\to\infty}\frac{n^2+1}{n^2+2n+1}=\lim_{n\to\infty}\frac{1+\frac{1}{n^2}}{1+\frac{2}{n}+\frac{1}{n^2}}=1$$

5. Determine whether $$\left\{{n+47\over\sqrt{n^2+3n}}\right\}_{n=1}^\infty$$ converges or diverges. If it converges, compute the limit.

Solution:

$$f^{'}(n)=\frac{\sqrt{n^2+3n}-(n+47)\cdot{1\over2}\cdot{1\over\sqrt{n^2+3n}}\cdot(2n+3)}{n^2+3n} < 0$$ $$\Longleftrightarrow \sqrt{n^2+3n}-(n+47)\cdot{1\over2}\cdot{1\over\sqrt{n^2+3n}}\cdot(2n+3) < 0$$ $$\Longleftrightarrow n^2+3n < {1\over2}\cdot(2n^2+97n+141)$$ $$\Longleftrightarrow n^2+3n < n^2+48.5n+70.5$$ The last inequality is obvious. Thus it is decreasing. On the other hand, $${n+47\over\sqrt{n^2+3n}}>0$$ which means it is bounded below. Hence it is convergent. And we have $$\lim_{n\to\infty}{n+47\over\sqrt{n^2+3n}}=\lim_{n\to\infty}{1+\frac{47}{n}\over\sqrt{1+\frac{3}{n}}}=1$$

6. Determine whether $$\left\{{2^n\over n!}\right\}_{n=0}^\infty$$ converges or diverges. If it converges, compute the limit.

Solution:

$${a_{n+1}\over a_n}={\frac{2^{n+1}}{(n+1)!}\over\frac{2^n}{n!}}={2\over n+1} < 1$$ when $n > 2$. Thus it is decreasing. On the other hand, $${2^n\over n!}>0$$ which means it is bounded below. Thus it is convergent. $$0<{2^n\over n!}={2\over n}\cdot {2\over n-1} \cdot\cdots\cdots\cdot{2\over3}\cdot{2\over2}\cdot{2\over1} < ({2\over3})^{n-2}\cdot2\to0\ (n\to\infty)$$ According to squeeze theorem we have $$\lim_{n\to\infty}{2^n\over n!}=0$$

MOOCULUS微积分-2: 数列与级数学习笔记 1. Sequences的更多相关文章

  1. MOOCULUS微积分-2: 数列与级数学习笔记 Review and Final

    此课程(MOOCULUS-2 "Sequences and Series")由Ohio State University于2014年在Coursera平台讲授. PDF格式教材下载 ...

  2. MOOCULUS微积分-2: 数列与级数学习笔记 7. Taylor series

    此课程(MOOCULUS-2 "Sequences and Series")由Ohio State University于2014年在Coursera平台讲授. PDF格式教材下载 ...

  3. MOOCULUS微积分-2: 数列与级数学习笔记 6. Power series

    此课程(MOOCULUS-2 "Sequences and Series")由Ohio State University于2014年在Coursera平台讲授. PDF格式教材下载 ...

  4. MOOCULUS微积分-2: 数列与级数学习笔记 5. Another comparison test

    此课程(MOOCULUS-2 "Sequences and Series")由Ohio State University于2014年在Coursera平台讲授. PDF格式教材下载 ...

  5. MOOCULUS微积分-2: 数列与级数学习笔记 4. Alternating series

    此课程(MOOCULUS-2 "Sequences and Series")由Ohio State University于2014年在Coursera平台讲授. PDF格式教材下载 ...

  6. MOOCULUS微积分-2: 数列与级数学习笔记 3. Convergence tests

    此课程(MOOCULUS-2 "Sequences and Series")由Ohio State University于2014年在Coursera平台讲授. PDF格式教材下载 ...

  7. MOOCULUS微积分-2: 数列与级数学习笔记 2. Series

    此课程(MOOCULUS-2 "Sequences and Series")由Ohio State University于2014年在Coursera平台讲授. PDF格式教材下载 ...

  8. 《Java学习笔记(第8版)》学习指导

    <Java学习笔记(第8版)>学习指导 目录 图书简况 学习指导 第一章 Java平台概论 第二章 从JDK到IDE 第三章 基础语法 第四章 认识对象 第五章 对象封装 第六章 继承与多 ...

  9. 20145330第五周《Java学习笔记》

    20145330第五周<Java学习笔记> 这一周又是紧张的一周. 语法与继承架构 Java中所有错误都会打包为对象可以尝试try.catch代表错误的对象后做一些处理. 使用try.ca ...

随机推荐

  1. Theano3.5-练习之深度卷积网络

    来源:http://deeplearning.net/tutorial/lenet.html#lenet Convolutional Neural Networks (LeNet) note:这部分假 ...

  2. 【自己给自己题目做】:如何在Canvas上实现魔方效果

    最终demo -> 3d魔方 体验方法: 浮动鼠标找到合适的位置,按空格键暂停 选择要翻转的3*3模块,找到相邻两个正方体,鼠标点击第一个正方体,并且一直保持鼠标按下的状态直到移到第二个正方体后 ...

  3. 阿里云Ubuntu 14.04 + Nginx + let's encrypt 搭建https访问

    参考页面: https://certbot.eff.org/#ubuntutrusty-nginx http://bbs.qcloud.com/thread-12059-1-1.html http:/ ...

  4. .Net分布式异常报警系统-服务端Service

    服务端的2个Service 1. HandleService: 从Redis中获取异常信息, 入库并发送通知到相关责任人.  2. HealthyCheckService: 对站点指定页面进行模拟访问 ...

  5. js中字符串和数组相互转化的方法

    p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px "Helvetica Neue"; color: #e4af0a } p. ...

  6. 数据库系统原理——ER模型与关系模型

    原文链接: http://blog.csdn.net/haovip123/article/details/21614887 犹记得第一次看<数据库系统原理>时看天书的感觉,云里雾里:现在已 ...

  7. Myeclipse 2015 stable 2.0 完美破解方法

    2015-08-21  以前写了一篇<Myeclipse 2015 stable 1.0 完美破解方法>,现 在跟新一下Myeclipse 2015 stable 2.0 破解方法,此方法 ...

  8. Css-自适应高度修复(高度随内容而自动撑高)

    <!DOCTYPE html> <html> <head> <meta http-equiv="Content-Type" content ...

  9. 网络设计中需要考虑的时延latency差异

    Jeff Dean提到不同数据访问方式latency差异 Numbers Everyone Should Know L1 cache reference 0.5 ns Branch mispredic ...

  10. androd Sdk manager配置

    Android Android SDK 配置步骤 启动 Android SDK Manager ,打开主界面,依次选择「Tools」.「Options...」,弹出『Android SDK Manag ...