首先只有一种字符的情况可以通过双指针在$O(n)$的时间内处理完毕。

设$cnt[i][j]$表示前$i$个字符中$j$字符出现的次数,那么对于两个位置$j<i$:

如果

$cnt[i][0]-cnt[j][0]\neq cnt[i][1]-cnt[j][1]$

$cnt[i][0]-cnt[j][0]\neq cnt[i][2]-cnt[j][2]$

$cnt[i][1]-cnt[j][1]\neq cnt[i][2]-cnt[j][2]$

均成立,即

$cnt[i][0]-cnt[i][1]\neq cnt[j][0]-cnt[j][1]$

$cnt[i][0]-cnt[i][2]\neq cnt[j][0]-cnt[j][2]$

$cnt[i][1]-cnt[i][2]\neq cnt[j][1]-cnt[j][2]$

均成立的话,那么就可以用$i-j$去更新答案。

设$b[i]=cnt[i][0]-cnt[i][1],c[i]=cnt[i][0]-cnt[i][2],d[i]=cnt[i][1]-cnt[i][2]$。

将所有位置按$b$从小到大排序,按$c$维护树状数组,每个区间维护$d$不同的$j$的最小值、次小值、最大值、次大值即可。

时间复杂度$O(n\log n)$。

#include<cstdio>
#define N 1000010
int n,m,i,j,D,cnt[3],col,b[N],c[N],d[N],g[N<<1],nxt[N],v[N<<1],ans;char a[N];
struct P{
int mi0,mi1,ma0,ma1;
P(){mi0=mi1=ma0=ma1=-1;}
void up(){
if(mi0<0){mi0=ma0=j;return;}
if(j<mi0){
if(D!=d[mi0])mi1=mi0;
mi0=j;
}else if((mi1<0||j<mi1)&&D!=d[mi0])mi1=j;
if(j>ma0){
if(D!=d[ma0])ma1=ma0;
ma0=j;
}else if(j>ma1&&D!=d[ma0])ma1=j;
}
}T[N];
inline int id(char x){
if(x=='B')return 0;
if(x=='C')return 1;
return 2;
}
inline void up(int a){if(ans<a)ans=a;}
inline void addedge(int x,int y){nxt[y]=g[x];g[x]=y;}
inline void ins(int x){for(;x<=m;x+=x&-x)T[x].up();}
inline void ask(int x){
for(;x;x-=x&-x){
P*t=T+x;
if(~t->mi0){
if(D!=d[t->mi0])up(j-t->mi0);else if(~t->mi1)up(j-t->mi1);
if(D!=d[t->ma0])up(t->ma0-j);else if(~t->ma1)up(t->ma1-j);
}
}
}
inline void add(int x){if(!cnt[x])col++;cnt[x]++;}
inline void del(int x){cnt[x]--;if(!cnt[x])col--;}
int main(){
scanf("%d%s",&n,a+1);
for(i=1;i<=n;i++){
cnt[a[i]=id(a[i])]++;
b[i]=cnt[0]-cnt[1],c[i]=cnt[0]-cnt[2],d[i]=cnt[1]-cnt[2];
}
for(i=0;i<=n+n;i++)g[i]=-1;
for(i=0;i<=n;i++)addedge(b[i]+n,i),v[c[i]+=n+1]=1;
for(i=1;i<=n+n+1;i++)v[i]+=v[i-1];
for(i=0;i<=n;i++){
c[i]=v[c[i]];
if(c[i]>m)m=c[i];
}
for(i=0;i<=n+n;i++){
for(j=g[i];~j;j=nxt[j])D=d[j],ask(c[j]-1);
for(j=g[i];~j;j=nxt[j])D=d[j],ins(c[j]);
}
for(i=0;i<=n;i++)c[i]=m-c[i]+1;
for(i=1;i<=m;i++)T[i]=P();
for(i=0;i<=n+n;i++){
for(j=g[i];~j;j=nxt[j])D=d[j],ask(c[j]-1);
for(j=g[i];~j;j=nxt[j])D=d[j],ins(c[j]);
}
for(i=0;i<3;i++)cnt[i]=0;
for(i=j=1;i<=n;up(i-j+1),i++)for(add(a[i]);col>1;del(a[j++]));
return printf("%d",ans),0;
}

  

BZOJ4384 : [POI2015]Trzy wieże的更多相关文章

  1. 【BZOJ4384】[POI2015]Trzy wieże 树状数组

    [BZOJ4384][POI2015]Trzy wieże Description 给定一个长度为n的仅包含'B'.'C'.'S'三种字符的字符串,请找到最长的一段连续子串,使得这一段要么只有一种字符 ...

  2. BZOJ 4384: [POI2015]Trzy wieże

    4384: [POI2015]Trzy wieże Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 217  Solved: 61[Submit][St ...

  3. [POI2015]Trzy wieże

    [POI2015]Trzy wieże 题目大意: 给定一个长度为\(n(n\le10^6)\)的仅包含'B'.'C'.'S'三种字符的字符串,请找到最长的一段连续子串,使得在这一段内出现过的所有字符 ...

  4. POI2015题解

    POI2015题解 吐槽一下为什么POI2015开始就成了破烂波兰文题目名了啊... 咕了一道3748没写打表题没什么意思,还剩\(BZOJ\)上的\(14\)道题. [BZOJ3746][POI20 ...

  5. [Poi2015]

    [POI2015]Łasuchy 一看以为是sb题 简单来说就是每个人获得热量要尽量多 不能找别人 首先这道题好像我自己找不到NIE的情况 很容易想到一个优化 如果一个数/2>另一个数 那么一定 ...

  6. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

  7. poi2015 bzoj4377-4386训练

    就按时间顺序写吧 完成度:10/10 3.30 bzoj4385 首先一定是删去连续d个数,然后枚举终点,起点显然有单调性,用单调队列乱搞搞就可以啦 bzoj4378 首先才结论:可行当且仅当把所有大 ...

  8. BZOJ 4385: [POI2015]Wilcze doły

    4385: [POI2015]Wilcze doły Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 648  Solved: 263[Submit][ ...

  9. Bzoj 3747: [POI2015]Kinoman 线段树

    3747: [POI2015]Kinoman Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 553  Solved: 222[Submit][Stat ...

随机推荐

  1. entOS7安装iptables防火墙,试验未通过

    CentOS7默认的防火墙不是iptables,而是firewalle. 安装iptable iptable-service #先检查是否安装了iptables service iptables st ...

  2. 昨晚把家里的ie升级到11

    其实网上有些东西是实用的,不过之前的一次锁屏唤醒机器死机我就强制关机了,昨天把大部分驱动升级.

  3. MVC – 15.路由机制

    15.1.路由检测插件 - RouteDebug 15.2.路由约束 15.3.命名路由 15.4.验证码 15.5.ASP.NET MVC 与 三层架构 15.6.Area区域 15.6.1.尝试将 ...

  4. AIX性能监控

    http://www.ibm.com/developerworks/cn/aix/library/au-aix7memoryoptimize2/ http://www.aixchina.net/Art ...

  5. ActiveMQ的几种消息持久化机制

    为了避免意外宕机以后丢失信息,需要做到重启后可以恢复消息队列,消息系统一般都会采用持久化机制. ActiveMQ的消息持久化机制有JDBC,AMQ,KahaDB和LevelDB,无论使用哪种持久化方式 ...

  6. Android 下拉刷新

    以前旧版用的是开源的PullToRefresh第三方库,该库现在已经不再维护了: chrisbanes/Android-PullToRefreshhttps://github.com/chrisban ...

  7. Linux文件系统(inode、block……)

    内容源于<鸟哥的Linux私房菜> 认识 EXT2 文件系统 文件系统的特殊观察与操作 文件系统 superblock,inode,block superblock,inode,block ...

  8. 常用的Java代码汇总

    1. 字符串有整型的相互转换           Java   1 2 <strong>Stringa=String.valueOf(2);   //integer to numeric ...

  9. struct 类型重定义

    类型定义的那个头文件只需要在功能源文件里#include 开始在主函数源文件里也#include,所以出现了重定义

  10. LR通过snmp监控linux下的mysql

    LR通过snmp监控linux下的mysql 在linux底下安装配置snmp: 1.使用系统盘安装rpm包(这种方式最好) 2.在www.net-snmp.org处下载net-snmp安装(安装后有 ...