声音的本质是震动,震动的本质是位移关于时间的函数,波形文件(.wav)中记录了不同采样时刻的位移。

通过傅里叶变换,可以将时间域的声音函数分解为一系列不同频率的正弦函数的叠加,通过频率谱线的特殊分布,建立音频内容和文本的对应关系,以此作为模型训练的基础。

案例:画出语音信号的波形和频率分布,(freq.wav数据地址

# -*- encoding:utf-8 -*-
import numpy as np
import numpy.fft as nf
import scipy.io.wavfile as wf
import matplotlib.pyplot as plt sample_rate, sigs = wf.read('../machine_learning_date/freq.wav')
print(sample_rate) # 8000采样率
print(sigs.shape) # (3251,)
sigs = sigs / (2 ** 15) # 归一化
times = np.arange(len(sigs)) / sample_rate
freqs = nf.fftfreq(sigs.size, 1 / sample_rate)
ffts = nf.fft(sigs)
pows = np.abs(ffts)
plt.figure('Audio')
plt.subplot(121)
plt.title('Time Domain')
plt.xlabel('Time', fontsize=12)
plt.ylabel('Signal', fontsize=12)
plt.tick_params(labelsize=10)
plt.grid(linestyle=':')
plt.plot(times, sigs, c='dodgerblue', label='Signal')
plt.legend()
plt.subplot(122)
plt.title('Frequency Domain')
plt.xlabel('Frequency', fontsize=12)
plt.ylabel('Power', fontsize=12)
plt.tick_params(labelsize=10)
plt.grid(linestyle=':')
plt.plot(freqs[freqs >= 0], pows[freqs >= 0], c='orangered', label='Power')
plt.legend()
plt.tight_layout()
plt.show()

语音识别

梅尔频率倒谱系数(MFCC)通过与声音内容密切相关的13个特殊频率所对应的能量分布,可以使用梅尔频率倒谱系数矩阵作为语音识别的特征。基于隐马尔科夫模型进行模式识别,找到测试样本最匹配的声音模型,从而识别语音内容。

MFCC

梅尔频率倒谱系数相关API:

import scipy.io.wavfile as wf
import python_speech_features as sf

sample_rate, sigs = wf.read('../data/freq.wav')
mfcc = sf.mfcc(sigs, sample_rate)

案例:画出MFCC矩阵:

python -m pip install python_speech_features

import scipy.io.wavfile as wf
import python_speech_features as sf
import matplotlib.pyplot as mp

sample_rate, sigs = wf.read(
'../ml_data/speeches/training/banana/banana01.wav')
mfcc = sf.mfcc(sigs, sample_rate)

mp.matshow(mfcc.T, cmap='gist_rainbow')
mp.show()

隐马尔科夫模型

隐马尔科夫模型相关API:

import hmmlearn.hmm as hl

model = hl.GaussianHMM(n_components=4, covariance_type='diag', n_iter=1000)
# n_components: 用几个高斯分布函数拟合样本数据
# covariance_type: 相关矩阵的辅对角线进行相关性比较
# n_iter: 最大迭代上限
model.fit(mfccs) # 使用模型匹配测试mfcc矩阵的分值 score = model.score(test_mfccs)

案例:训练training文件夹下的音频,对testing文件夹下的音频文件做分类

语音识别设计思路

1、读取training文件夹中的训练音频样本,每个音频对应一个mfcc矩阵,每个mfcc都有一个类别(apple)

import os
import numpy as np
import scipy.io.wavfile as wf
import python_speech_features as sf
import hmmlearn.hmm as hl # 1. 读取training文件夹中的训练音频样本,每个音频对应一个mfcc矩阵,每个mfcc都有一个类别(apple...)。
def search_file(directory):
"""
:param directory: 训练音频的路径
:return: 字典{'apple':[url, url, url ... ], 'banana':[...]}
"""
# 使传过来的directory匹配当前操作系统
directory = os.path.normpath(directory)
objects = {}
# curdir:当前目录
# subdirs: 当前目录下的所有子目录
# files: 当前目录下的所有文件名
for curdir, subdirs, files in os.walk(directory):
for file in files:
if file.endswith('.wav'):
label = curdir.split(os.path.sep)[-1] # os.path.sep为路径分隔符
if label not in objects:
objects[label] = []
# 把路径添加到label对应的列表中
path = os.path.join(curdir, file)
objects[label].append(path)
return objects # 读取训练集数据
train_samples = search_file('../machine_learning_date/speeches/training')

2、把所有类别为apple的mfcc合并在一起,形成训练集。

训练集:

train_x:[mfcc1,mfcc2,mfcc3,...],[mfcc1,mfcc2,mfcc3,...]...

train_y:[apple],[banana]...

  由上述训练集样本可以训练一个用于匹配apple的HMM。

train_x, train_y = [], []
# 遍历字典
for label, filenames in train_samples.items():
# [('apple', ['url1,,url2...'])
# [("banana"),("url1,url2,url3...")]...
mfccs = np.array([])
for filename in filenames:
sample_rate, sigs = wf.read(filename)
mfcc = sf.mfcc(sigs, sample_rate)
if len(mfccs) == 0:
mfccs = mfcc
else:
mfccs = np.append(mfccs, mfcc, axis=0)
train_x.append(mfccs)
train_y.append(label)

3、训练7个HMM分别对应每个水果类别。 保存在列表中。

# 训练模型,有7个句子,创建了7个模型
models = {}
for mfccs, label in zip(train_x, train_y):
model = hl.GaussianHMM(n_components=4, covariance_type='diag', n_iter=1000)
models[label] = model.fit(mfccs) # # {'apple':object, 'banana':object ...}

4、读取testing文件夹中的测试样本,整理测试样本

  测试集数据:

  test_x: [mfcc1, mfcc2, mfcc3...]

  test_y :[apple, banana, lime]

# 读取测试集数据
test_samples = search_file('../machine_learning_date/speeches/testing') test_x, test_y = [], []
for label, filenames in test_samples.items():
mfccs = np.array([])
for filename in filenames:
sample_rate, sigs = wf.read(filename)
mfcc = sf.mfcc(sigs, sample_rate)
if len(mfccs) == 0:
mfccs = mfcc
else:
mfccs = np.append(mfccs, mfcc, axis=0)
test_x.append(mfccs)
test_y.append(label)

5、针对每一个测试样本:
  1、分别使用7个HMM模型,对测试样本计算score得分。
  2、取7个模型中得分最高的模型所属类别作为预测类别。

pred_test_y = []
for mfccs in test_x:
# 判断mfccs与哪一个HMM模型更加匹配
best_score, best_label = None, None
# 遍历7个模型
for label, model in models.items():
score = model.score(mfccs)
if (best_score is None) or (best_score < score):
best_score = score
best_label = label
pred_test_y.append(best_label) print(test_y) # ['apple', 'banana', 'kiwi', 'lime', 'orange', 'peach', 'pineapple']
print(pred_test_y) # ['apple', 'banana', 'kiwi', 'lime', 'orange', 'peach', 'pineapple']

声音合成

根据需求获取某个声音的模型频域数据,根据业务需要可以修改模型数据,逆向生成时域数据,完成声音的合成。

案例,(数据集12.json地址):

import json
import numpy as np
import scipy.io.wavfile as wf
with open('../data/12.json', 'r') as f:
freqs = json.loads(f.read())
tones = [
('G5', 1.5),
('A5', 0.5),
('G5', 1.5),
('E5', 0.5),
('D5', 0.5),
('E5', 0.25),
('D5', 0.25),
('C5', 0.5),
('A4', 0.5),
('C5', 0.75)]
sample_rate = 44100
music = np.empty(shape=1)
for tone, duration in tones:
times = np.linspace(0, duration, duration * sample_rate)
sound = np.sin(2 * np.pi * freqs[tone] * times)
music = np.append(music, sound)
music *= 2 ** 15
music = music.astype(np.int16)
wf.write('../data/music.wav', sample_rate, music)

Python实现语音识别和语音合成的更多相关文章

  1. ros下基于百度语音的,语音识别和语音合成

    代码地址如下:http://www.demodashi.com/demo/13153.html 概述: 本demo是ros下基于百度语音的,语音识别和语音合成,能够实现文字转语音,语音转文字的功能. ...

  2. Python实时语音识别控制

    代码地址如下:http://www.demodashi.com/demo/12946.html Python实时语音识别控制 概述 本文中的语音识别功能采用 百度语音识别库 ,首先利用 PyAudio ...

  3. Delphi百度语音【支持语音识别和语音合成】

    作者QQ:(648437169) 点击下载➨百度语音         语音识别api文档         语音合成api文档 [Delphi 百度语音]支持获取 Access Token.语音识别.语 ...

  4. Python 百度语音识别与合成REST API及ffmpeg使用

    操作系统:Windows Python:3.5 欢迎加入学习交流QQ群:657341423 百度语音识别官方文档 百度语音合成官方文档 注意事项:接口支持 POST 和 GET两种方式,个人支持用po ...

  5. Python简单语音识别并响应

    起因是一个工作中喜欢说口头禅的同事,昨天老说"你看看你看看 操不操心".说了几次之后我就在他说完"你看看"后面续上,"操不操心".往复多次后 ...

  6. python +百度语音识别+图灵对话

    https://github.com/Dongvdong/python_Smartvoice 上电后,只要周围声音超过 2000,开始录音5S 录音上传百度识别,并返回结果文字输出 继续等待,周围声音 ...

  7. python之语音识别(speech模块)

    1.原理 语音操控分为 语音识别和语音朗读两部分. 这两部分本来是需要自然语言处理技能相关知识以及一系列极其复杂的算法才能搞定,可是这篇文章将会跳过此处,如果你只是对算法和自然语言学感兴趣的话,就只有 ...

  8. Python 语音识别

    调用科大讯飞语音听写,使用Python实现语音识别,将实时语音转换为文字. 参考这篇博客实现的录音,首先在官网下载了关于语音听写的SDK,然后在文件夹内新建了两个.py文件,分别是get_audio. ...

  9. 语音识别中的CTC算法的基本原理解释

    欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 本文作者:罗冬日 目前主流的语音识别都大致分为特征提取,声学模型,语音模型几个部分.目前结合神经网络的端到端的声学模型训练方法主要CTC和基 ...

随机推荐

  1. ZooKeeper系列(三)—— Zookeeper 常用 Shell 命令

    一.节点增删改查 1.1 启动服务和连接服务 # 启动服务 bin/zkServer.sh start #连接服务 不指定服务地址则默认连接到localhost:2181 zkCli.sh -serv ...

  2. Go调度器介绍和容易忽视的问题

    本文记录了本人对Golang调度器的理解和跟踪调度器的方法,特别是一个容易忽略的goroutine执行顺序问题,看了很多篇Golang调度器的文章都没提到这个点,分享出来一起学习,欢迎交流指正. 什么 ...

  3. win10文件备份、文件同步方案

    用个人版onedrive同步重要数据,数据安全有保障,但免费版只有15G空间,需要合理分配.(201907与别人合租家庭版,空间1T充足) google-drive可以同步指定的文件夹,但空间也只有1 ...

  4. serverless在微店node领域的探索应用

    背景 目前微店中台团队为了满足公司大部分产品.运营以及部分后端开发人员的尝鲜和试错的需求,提供了一套基于图形化搭建的服务端接口交付方案,利用该方案及提供的系统可生成一副包含运行时环境定义可立即运行的工 ...

  5. tensorflow学习笔记——多线程输入数据处理框架

    之前我们学习使用TensorFlow对图像数据进行预处理的方法.虽然使用这些图像数据预处理的方法可以减少无关因素对图像识别模型效果的影响,但这些复杂的预处理过程也会减慢整个训练过程.为了避免图像预处理 ...

  6. 从零写一个编译器(十三):代码生成之遍历AST

    项目的完整代码在 C2j-Compiler 前言 在上一篇完成对JVM指令的生成,下面就可以真正进入代码生成部分了.通常现代编译器都是先把生成IR,再经过代码优化等等,最后才编译成目标平台代码.但是时 ...

  7. ZooKeeper实现读写锁

    在上一篇文章,我们已经实现了分布式锁.今天更进一步,在分布式锁的基础之上,实现读写锁. 完整代码在 https://github.com/SeemSilly/codestory/tree/master ...

  8. Flink集群Standalone启动脚本(源码分析)

    整个Flink集群的角色分为Jobmanager和TaskManager 以Standalone为例来看一下脚本里面是怎样启动集群的 找到源码的dist这里面包含了启动的脚本文件 standalone ...

  9. c++ 左移

    maxval = (1 << d) - 1: d=8 意思是2^d-1,相当于1左移d位

  10. Fortigate防火墙常用命令

    命令结构 #config 对策略,对象等进行配置 #get  查看相关对象的参数 #show 查看配置文件 #diagnose 诊断命令 #execute  常用的工具命令,如ping treacer ...