【机器学习】梯度、Hessian矩阵、平面方程的法线以及函数导数的含义
想必单独论及“ 梯度、Hessian矩阵、平面方程的法线以及函数导数”等四个基本概念的时候,绝大部分人都能够很容易地谈个一二三,基本没有问题。
其实在应用的时候,这几个概念经常被混淆,本文试图把这几个概念之间的关系整理一下,以便应用之时得心应手。
这四个概念中,Hessian矩阵是最不容易混淆,但却是很多人难以记住的概念,其它三个概念很容易记住,但却在某些时候很容易混淆。
- Hessian矩阵:设有凸函数f(X),X是向量(x1,x2,..., xn),Hessian矩阵M定义为:M的第i行,第j列元素为df(X)/dxidxj, 即为f(X)对于变量xi和xj的二次偏导数。
- 梯度:设有凸函数f(X),X是向量(x1,x2,..., xn),函数f(X)在点X0处的梯度是一个向量,等于(df(X0)/dx1, df(X0)/dx2, ...., df(X0)/dxn), 即是对于各个变量的偏导数的向量。例子:如果方程是z=f(x,y),梯度是在XOY平面内的一个向量,与z无关。因此要特别注意梯度不是点(X,f(X))处的切线方向。
- 平面方程的法线:设平面方程Ax+By+Cz+D = 0,向量(A, B, C)为这个平面的法线方向。
- 函数导数:二维直线的方程y= kx+b,我们说k是直线的斜率;二维曲线y=f(x)的导数f '(x)表示在点x处的切线的斜率,注意是切线的斜率,不是切线的方向,它是标量,不是向量。任意曲线y=f(x1,x2,...xn),对每一个变量求取偏导数,得到一个向量(df(X)/dx1, df(X)/dx2, ...., df(X)/dxn),这个向量就是函数在点X处的梯度,即梯度是表示曲线f(X)在X处变化最剧烈的方向,特别注意梯度并不是在点(X,
f(X))处的切线方向, 梯度只是在点(X, f(X))处的切线方向在X构成的“平面”上的投影。注意,对于二维直线y=kx+b,它也是可以求取梯度的,它的梯度是向量(k),只有一个值,表示的是x方向上的向量,大小是x方向上的单位变化导致y变化量的大小,即就是切线的斜率。
【机器学习】梯度、Hessian矩阵、平面方程的法线以及函数导数的含义的更多相关文章
- 梯度、Hessian矩阵、平面方程的法线以及函数导数的含义
本文转载自: Xianling Mao的专栏 =========================================================================== 想 ...
- 梯度vs Jacobian矩阵vs Hessian矩阵
梯度向量 定义: 目标函数f为单变量,是关于自变量向量x=(x1,x2,-,xn)T的函数, 单变量函数f对向量x求梯度,结果为一个与向量x同维度的向量,称之为梯度向量: 1. Jacobian 在向 ...
- 三维重建面试4:Jacobian矩阵和Hessian矩阵
在使用BA平差之前,对每一个观测方程,得到一个代价函数.对多个路标,会产生一个多个代价函数的和的形式,对这个和进行最小二乘法进行求解,使用优化方法.相当于同时对相机位姿和路标进行调整,这就是所谓的BA ...
- Jacobian矩阵、Hessian矩阵和Newton's method
在寻找极大极小值的过程中,有一个经典的算法叫做Newton's method,在学习Newton's method的过程中,会引入两个矩阵,使得理解的难度增大,下面就对这个问题进行描述. 1, Jac ...
- Hessian矩阵与牛顿法
Hessian矩阵与牛顿法 牛顿法 主要有两方面的应用: 1. 求方程的根: 2. 求解最优化方法: 一. 为什么要用牛顿法求方程的根? 问题很多,牛顿法 是什么?目前还没有讲清楚,没关系,先直观理解 ...
- C#处理医学图像(一):基于Hessian矩阵的血管肺纹理骨骼增强对比
在医院实际环境中,经常遇到有问题的患者,对于一些特殊的场景,比如骨折,肺结节,心脑血管问题 需要图像对比增强来更为清晰的显示病灶助于医生确诊,先看效果: 肺纹理增强: 肺结节增强: 血管对比增强: 骨 ...
- Hessian矩阵【转】
http://blog.sina.com.cn/s/blog_7e1ecaf30100wgfw.html 在数学中,海塞矩阵是一个自变量为向量的实值函数的二阶偏导数组成的方块矩阵,一元函数就是二阶导, ...
- Hessian矩阵与多元函数极值
Hessian矩阵与多元函数极值 海塞矩阵(Hessian Matrix),又译作海森矩阵,是一个多元函数的二阶偏导数构成的方阵.虽然它是一个具有悠久历史的数学成果.可是在机器学习和图像处理(比如SI ...
- Jacobian矩阵和Hessian矩阵
1.Jacobian矩阵 在矩阵论中,Jacobian矩阵是一阶偏导矩阵,其行列式称为Jacobian行列式.假设 函数 $f:R^n \to R^m$, 输入是向量 $x \in R^n$ ,输出为 ...
随机推荐
- TCP/IP 三次握手和四次挥手
TCP 三次握手 作用:建立TCP连接 1.三次握手是客户端先发起请求到服务器,此时服务器处于LISTEN监听状态,A会先发送一个连接请求的报文---SYN=1,ACK=0,seq=x ,这个包也称为 ...
- [Python之路] 元类(引申 单例模式)
一.类也是对象 当我们定义一个变量或者函数的时候,我们可以在globals()的返回值字典中找到响应的映射: def A(): print("This is function A" ...
- redis异步处理
$reids = new Redis; $redis->connect('localhost',6379); $redis->auth(''); //将数组转换成字符串再存到redis中 ...
- swagger2 常用注解说明
常用到的注解有: Api ApiModel ApiModelProperty ApiOperation ApiParam ApiResponse ApiResponses ResponseHeader ...
- maven项目创7 配置分页插件
页面编写顺序 首先确定是否拥有想要的pojo(对象实体类)———>dao层mybatis配置——>service层的接口及实现类——>controller(web下) 分页插件作 ...
- Confluence 6 在一个空间中查看所有附加的文件
有下面 2 种方法可以让你查看空间的所有附件.你可以: 使用 Space Attachments Macro 来在一个页面中显示列表文件. 进入空间后,然后从边栏的底部选择 空间工具(Space to ...
- nu.random.seed()如何理解
结论: np.random.seed(a) # 按照规定的顺序生成随机数 # 参数a指定了随机数生成的起始位置: # 如果两处都采用了np.random.seed(a),且两处的参数a相同,则生成的随 ...
- Thread(简单使用)
/***thread.c***/#include<stdio.h> #include<stdlib.h> #include<pthread.h> void prin ...
- Ubuntu安装之pycharm安装
什么??公司要用Ubuntu(乌班图)?不会用??怎么进行python开发??? 乌班图操作系统下载地址:http://releases.ubuntu.com/18.04/ubuntu-18.04.1 ...
- Paint the Digits
C - Paint the Digits 思路:这道题就只需要利用单调栈,将整个数组扫一遍,求得的最后的栈内元素(要求全部小于非栈内元素)的颜色为1,其余为2 那么怎么实现呢?求最后的栈内元素(要求全 ...