Given two strings, find the longest common subsequence (LCS).

Your code should return the length of LCS.

Example

For "ABCD" and "EDCA", the LCS is "A" (or "D""C"), return 1.

For "ABCD" and "EACB", the LCS is "AC", return 2.

最长公共子序列的定义:

最长公共子序列问题是在一组序列(通常2个)中找到最长公共子序列(注意:不同于子串,LCS不需要是连续的子串).

State: f[i][j] 表示在字符串A中前i个字符与B字符串前j个字符的最长LCS。

Fuction: f[i][j] = max(f[i - 1][j], f[i][j - 1]) if (A[i -1] != B[j - 1]) 对应与 “abc” “ab” 和 “ab" 和”abc“。if(A[i - 1] == B[j - 1]) f[i][j] = max(f[i - 1][j], f[i][j - 1], f[i - 1][j -1] + 1).

Initialization: int [][] f = new int[A.length() + 1][B.length() + 1]

Answer:f[A.length()][B.length()]

 public class Solution {
/**
* @param A, B: Two strings.
* @return: The length of longest common subsequence of A and B.
*/
public int longestCommonSubsequence(String A, String B) {
int m = A.length();
int n = B.length();
if (m == 0 || n == 0) {
return 0;
}
int[][] f = new int[m + 1][n + 1];
for (int i = 1; i <= m; i++) {
for (int j = 1; j <= n; j++) {
f[i][j] = Math.max(f[i - 1][j], f[i][j - 1]);
if (A.charAt(i - 1) == B.charAt(j - 1)) {
f[i][j] = Math.max(f[i][j], f[i - 1][j - 1] + 1);
}
}
}
return f[m][n];
}
}

        

Longest Common Subsequence (DP)的更多相关文章

  1. UVA 10405 Longest Common Subsequence (dp + LCS)

    Problem C: Longest Common Subsequence Sequence 1: Sequence 2: Given two sequences of characters, pri ...

  2. 动态规划求最长公共子序列(Longest Common Subsequence, LCS)

    1. 问题描述 子串应该比较好理解,至于什么是子序列,这里给出一个例子:有两个母串 cnblogs belong 比如序列bo, bg, lg在母串cnblogs与belong中都出现过并且出现顺序与 ...

  3. LintCode Longest Common Subsequence

    原题链接在这里:http://www.lintcode.com/en/problem/longest-common-subsequence/ 题目: Given two strings, find t ...

  4. LCS(Longest Common Subsequence 最长公共子序列)

    最长公共子序列 英文缩写为LCS(Longest Common Subsequence).其定义是,一个序列 S ,如果分别是两个或多个已知序列的子序列,且是所有符合此条件序列中最长的,则 S 称为已 ...

  5. Longest Common Subsequence & Substring & prefix

    Given two strings, find the longest common subsequence (LCS). Your code should return the length of  ...

  6. Lintcode:Longest Common Subsequence 解题报告

    Longest Common Subsequence 原题链接:http://lintcode.com/zh-cn/problem/longest-common-subsequence/ Given ...

  7. [HackerRank] The Longest Common Subsequence

    This is the classic LCS problem. Since it requires you to print one longest common subsequence, just ...

  8. [Algorithms] Longest Common Subsequence

    The Longest Common Subsequence (LCS) problem is as follows: Given two sequences s and t, find the le ...

  9. 2017-5-14 湘潭市赛 Longest Common Subsequence 想法题

    Longest Common Subsequence Accepted : Submit : Time Limit : MS Memory Limit : KB Longest Common Subs ...

随机推荐

  1. Oracle数据库四种数据完整性约束

     Oracle数据库四种数据完整性约束 1.实体完整性 同样的数据不能重复插入(1)采取什么措施保证实体完整性?我们可以给表创建主键约束吗,主键保证了数据的唯一性,主键可以保证同一条记录只能插入一次. ...

  2. C++Primer 5th Chap6 Functions

    局部静态变量,关键字static修饰,即使函数结束执行也不受影响,生存期直到程序终止. java中static的单一存储空间的概念与其或有异曲同工之妙. 函数的形参可以无名,但有名可以使其意义更加清晰 ...

  3. 习题一初步理解时间复杂度大O表示法案例

    1.如果 a+b+c=1000,且 a^2+b^2=c^2(a,b,c 为自然数),如何求出所有a.b.c可能的组合? 如上:a+b+c=1000, a平方+b平方=c平方  求出所有abc可能的组合 ...

  4. 嗯。。 差不多是第一道自己搞出的状态方程 hdu4502 有一点点变形的背包

    吉哥系列故事——临时工计划 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Tot ...

  5. 箭头函数的arguments不可用

    ES5中的arguments function func(a,b,c){ console.log(arguments[0],arguments[1],arguments[2]) } func(1,2, ...

  6. Html5+Mui前端框架,开发记录(三):七牛云 上传图片

    1.Html界面: <div id="container"> <label>凭证:</label> <div id="uploa ...

  7. git命令 撤销文件修改

    git checkout . #本地所有修改的.没有的提交的,都返回到原来的状态 git checkout src/views/useChapter.vue #撤销项目目录 src/views/文件夹 ...

  8. putty和psftp命令行参数

    putty和psftp命令行参数 https://the.earth.li/~sgtatham/putty/latest/w32/putty.zip https://the.earth.li/~sgt ...

  9. 【前端】安装wampserver提示丢失MSVCR100.dll的解决方法

    先装Visual C++,再装wampserver 下载的时候请注意选择对应的32bit还是64bit的.然后安装. 再安装wamp

  10. Mediawiki 子页链接无效的问题

    添加下面的配置到 LocalSettings.php 中即可: # Enable subpages in the main namespace $wgNamespacesWithSubpages[NS ...