Longest Common Subsequence (DP)
Given two strings, find the longest common subsequence (LCS).
Your code should return the length of LCS.
Example
For "ABCD" and "EDCA", the LCS is "A" (or "D", "C"), return 1.
For "ABCD" and "EACB", the LCS is "AC", return 2.
最长公共子序列的定义:
最长公共子序列问题是在一组序列(通常2个)中找到最长公共子序列(注意:不同于子串,LCS不需要是连续的子串).
State: f[i][j] 表示在字符串A中前i个字符与B字符串前j个字符的最长LCS。
Fuction: f[i][j] = max(f[i - 1][j], f[i][j - 1]) if (A[i -1] != B[j - 1]) 对应与 “abc” “ab” 和 “ab" 和”abc“。if(A[i - 1] == B[j - 1]) f[i][j] = max(f[i - 1][j], f[i][j - 1], f[i - 1][j -1] + 1).
Initialization: int [][] f = new int[A.length() + 1][B.length() + 1]
Answer:f[A.length()][B.length()]
public class Solution {
/**
* @param A, B: Two strings.
* @return: The length of longest common subsequence of A and B.
*/
public int longestCommonSubsequence(String A, String B) {
int m = A.length();
int n = B.length();
if (m == 0 || n == 0) {
return 0;
}
int[][] f = new int[m + 1][n + 1];
for (int i = 1; i <= m; i++) {
for (int j = 1; j <= n; j++) {
f[i][j] = Math.max(f[i - 1][j], f[i][j - 1]);
if (A.charAt(i - 1) == B.charAt(j - 1)) {
f[i][j] = Math.max(f[i][j], f[i - 1][j - 1] + 1);
}
}
}
return f[m][n];
}
}
Longest Common Subsequence (DP)的更多相关文章
- UVA 10405 Longest Common Subsequence (dp + LCS)
Problem C: Longest Common Subsequence Sequence 1: Sequence 2: Given two sequences of characters, pri ...
- 动态规划求最长公共子序列(Longest Common Subsequence, LCS)
1. 问题描述 子串应该比较好理解,至于什么是子序列,这里给出一个例子:有两个母串 cnblogs belong 比如序列bo, bg, lg在母串cnblogs与belong中都出现过并且出现顺序与 ...
- LintCode Longest Common Subsequence
原题链接在这里:http://www.lintcode.com/en/problem/longest-common-subsequence/ 题目: Given two strings, find t ...
- LCS(Longest Common Subsequence 最长公共子序列)
最长公共子序列 英文缩写为LCS(Longest Common Subsequence).其定义是,一个序列 S ,如果分别是两个或多个已知序列的子序列,且是所有符合此条件序列中最长的,则 S 称为已 ...
- Longest Common Subsequence & Substring & prefix
Given two strings, find the longest common subsequence (LCS). Your code should return the length of ...
- Lintcode:Longest Common Subsequence 解题报告
Longest Common Subsequence 原题链接:http://lintcode.com/zh-cn/problem/longest-common-subsequence/ Given ...
- [HackerRank] The Longest Common Subsequence
This is the classic LCS problem. Since it requires you to print one longest common subsequence, just ...
- [Algorithms] Longest Common Subsequence
The Longest Common Subsequence (LCS) problem is as follows: Given two sequences s and t, find the le ...
- 2017-5-14 湘潭市赛 Longest Common Subsequence 想法题
Longest Common Subsequence Accepted : Submit : Time Limit : MS Memory Limit : KB Longest Common Subs ...
随机推荐
- C#传递参数调用exe程序
今天公司让我把Winform程序里的一块单独成一个exe文件,从原程序中打开新的exe程序,这就涉及到参数的传递,故来记录下传递参数到exe程序的方式 第一种方式 首先在程序A中添加引用using S ...
- jmeter XLSX 读取
import org.apache.poi.xssf.usermodel.XSSFWorkbook; import org.apache.poi.xssf.usermodel.XSSFSheet; i ...
- PHP二维数组的引用赋值容易犯的错误
大家一起来分析一下下面这段代码: <?php $arr = array(); $arr["abc"] = array("sex" => 100, & ...
- GB18030 字符集
gb18030 编辑 国家标准GB18030-2005<信息技术 中文编码字符集>是我国继GB2312-1980和GB13000.1-1993之后最重要的汉字编码标准,是我国计算机系统必须 ...
- 烧脑!CMU、北大等合著论文真的找到了神经网络的全局最优解
烧脑!CMU.北大等合著论文真的找到了神经网络的全局最优解 机器之心 已认证的官方帐号 811 人赞同了该文章 选自arXiv,作者:Simon S. Du.Jason D. Lee.Haochu ...
- Jenkins 2017年用过
Jenkins是一个开源软件项目,是基于Java开发的一种持续集成工具,用于监控持续重复的工作,旨在提供一个开放易用的软件平台,使软件的持续集成变成可能. Jenkins功能包括: 1.持续的软件版本 ...
- 查准率(precision)和查全率(recall)
一.理解查准率(precision)& 查全率(recall) 我们在平时常用到的模型评估指标是精度(accuracy)和错误率(error rate),错误率是:分类错误的样本数站样本总数的 ...
- Django rest-framework框架-组件之视图
视图: a. django class Test(View): ... b. rest_framework class Test(APIView): ... c. GenericAPIView 一般不 ...
- 【外网不好用】可以尝试添加dns即可解决上不去外网的问题。
可以将IPv4这里的DNS修改成以下内容再尝试上网试试.
- Go 方法使用
方法的定义 在 Go 语言里,方法和函数只差了一个,那就是方法在 func 和标识符之间多了一个参数. type user struct { name string, email string, } ...