Longest Common Subsequence (DP)
Given two strings, find the longest common subsequence (LCS).
Your code should return the length of LCS.
Example
For "ABCD"
and "EDCA"
, the LCS is "A"
(or "D"
, "C"
), return 1
.
For "ABCD"
and "EACB"
, the LCS is "AC"
, return 2
.
最长公共子序列的定义:
最长公共子序列问题是在一组序列(通常2个)中找到最长公共子序列(注意:不同于子串,LCS不需要是连续的子串).
State: f[i][j] 表示在字符串A中前i个字符与B字符串前j个字符的最长LCS。
Fuction: f[i][j] = max(f[i - 1][j], f[i][j - 1]) if (A[i -1] != B[j - 1]) 对应与 “abc” “ab” 和 “ab" 和”abc“。if(A[i - 1] == B[j - 1]) f[i][j] = max(f[i - 1][j], f[i][j - 1], f[i - 1][j -1] + 1).
Initialization: int [][] f = new int[A.length() + 1][B.length() + 1]
Answer:f[A.length()][B.length()]
public class Solution {
/**
* @param A, B: Two strings.
* @return: The length of longest common subsequence of A and B.
*/
public int longestCommonSubsequence(String A, String B) {
int m = A.length();
int n = B.length();
if (m == 0 || n == 0) {
return 0;
}
int[][] f = new int[m + 1][n + 1];
for (int i = 1; i <= m; i++) {
for (int j = 1; j <= n; j++) {
f[i][j] = Math.max(f[i - 1][j], f[i][j - 1]);
if (A.charAt(i - 1) == B.charAt(j - 1)) {
f[i][j] = Math.max(f[i][j], f[i - 1][j - 1] + 1);
}
}
}
return f[m][n];
}
}
Longest Common Subsequence (DP)的更多相关文章
- UVA 10405 Longest Common Subsequence (dp + LCS)
Problem C: Longest Common Subsequence Sequence 1: Sequence 2: Given two sequences of characters, pri ...
- 动态规划求最长公共子序列(Longest Common Subsequence, LCS)
1. 问题描述 子串应该比较好理解,至于什么是子序列,这里给出一个例子:有两个母串 cnblogs belong 比如序列bo, bg, lg在母串cnblogs与belong中都出现过并且出现顺序与 ...
- LintCode Longest Common Subsequence
原题链接在这里:http://www.lintcode.com/en/problem/longest-common-subsequence/ 题目: Given two strings, find t ...
- LCS(Longest Common Subsequence 最长公共子序列)
最长公共子序列 英文缩写为LCS(Longest Common Subsequence).其定义是,一个序列 S ,如果分别是两个或多个已知序列的子序列,且是所有符合此条件序列中最长的,则 S 称为已 ...
- Longest Common Subsequence & Substring & prefix
Given two strings, find the longest common subsequence (LCS). Your code should return the length of ...
- Lintcode:Longest Common Subsequence 解题报告
Longest Common Subsequence 原题链接:http://lintcode.com/zh-cn/problem/longest-common-subsequence/ Given ...
- [HackerRank] The Longest Common Subsequence
This is the classic LCS problem. Since it requires you to print one longest common subsequence, just ...
- [Algorithms] Longest Common Subsequence
The Longest Common Subsequence (LCS) problem is as follows: Given two sequences s and t, find the le ...
- 2017-5-14 湘潭市赛 Longest Common Subsequence 想法题
Longest Common Subsequence Accepted : Submit : Time Limit : MS Memory Limit : KB Longest Common Subs ...
随机推荐
- Fiddler之基础:面板、图标介绍
1.面板介绍:菜单栏,工具栏,回话面板,监控面板 2.工具栏-图标 3.会话面板-图标 4.监控面板 5.状态栏 控制台Fiddler的左下角有一个命令行工具叫做QuickExec,允许你直接输入命令 ...
- C++之父给 C 程序员的建议
1. 在 C++中几乎不需要用宏, 用 const 或 enum 定义显式的常量, 用 inline 避免函数调用的额外开销,用模板去刻画一族函数或类型,用 namespace 去避免命名冲突. 2. ...
- LeetCode. 颠倒二进制位
题目要求: 颠倒给定的 32 位无符号整数的二进制位. 示例: 输入: 00000010100101000001111010011100 输出: 001110010111100000101001010 ...
- IBM Security AppScan Standard使用方法
一.常规配置Appscan (安全自动化测试工具) Appscan是web应用程序渗透测试舞台上使用最广泛的工具之一.它是一个桌面应用程序,它有助于专业安全人员进行Web应用程序自动化脆弱性评估.本文 ...
- Django中常用的那些模块路径
Django中常用的那些模块路径 from django.shortcuts import HttpResponse, render, redirect from django import temp ...
- 跟我一起学编程—《Scratch编程》第24课:幸运大转盘
同学你好,欢迎来到<跟我一起学编程>,我是包老师.这是<Scratch3.0编程>课程的第24课,我这节课教你做一个抽奖游戏:幸运大转盘. 学习目标: 1. 能够熟练使用造型工 ...
- SpringCloud Eureka 配置
修改 Eureka server 注册中心上面显示的服务名称 参数配置 默认值 说明 服务注册中心配置 Bean类:org.springframework.cloud.netflix.eu ...
- 怎样理解Object.create()方法
Object.create()是一个用于生成新的对象的方法, 特点是: 1. Object.create()接收的第一个参数对象将会作为待生成的新对象的原型对象; 2. Object.create() ...
- (三)Activiti之第一个程序以及Activiti插件的使用和Activiti表的解释
一.案例 1.1 建立Activiti Diagram图 new -> activiti ->Activiti Diagram,创建一个HelloWorld文件,后缀自动为bpmn,如下图 ...
- JS基础_构造函数
<!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...