Hadoop下MapReduce实现Pi值的计算
Hadoop自带的例子中,有一个计算Pi值的例子。
这个程序的原理是这样的。假如有一个边长为1的正方形。以正方形的一个端点为圆心,以1为半径,画一个圆弧,于是在正方形内就有了一个直角扇形。在正方形里随机生成若干的点,则有些点是在扇形内,有些点是在扇形外。正方形的面积是1,扇形的面积是0.25*Pi。设点的数量一共是n,扇形内的点数量是nc,在点足够多足够密集的情况下,会近似有nc/n的比值约等于扇形面积与正方形面积的比值,也就是nc/n= 0.25*Pi/1,即Pi = 4*nc/n。
在正方形内生成的样本点越多,计算Pi值越精确,这样,这个问题就很适合用Hadoop来处理啦。假设要在正方形内生成1000万个点,可以设置10个Map任务,每个Map任务处理100万个点,也可以设置100个Map任务,每个Map任务处理10万个点。
package mapreduce1;
/*
* @create by 刘大哥
* 2019年9月3日
* 利用MapReduce计算pi值
* */
import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import PI.Pi; public class WordCount {
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
Job job = Job.getInstance();
job.setJobName("WordCount");
job.setJarByClass(WordCount.class);
job.setMapperClass(doMapper.class);
job.setReducerClass(doReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
Path in = new Path("hdfs://192.168.100.129:9000/user/hadoop/p1i.txt"); //输入路径
Path out = new Path("hdfs://192.168.100.129:9000/user/hadoop/out_pi1"); //输出路径
FileInputFormat.addInputPath(job, in);
FileOutputFormat.setOutputPath(job, out);
System.exit(job.waitForCompletion(true) ? : );
}
public static class doMapper extends Mapper<Object, Text, Text, IntWritable>{
private static final IntWritable one = new IntWritable();
@Override
protected void map(Object key, Text value, Context context) throws IOException, InterruptedException {
String line = value.toString();
String word = line.toString(); //读取每个map的数值
//System.out.println(word);
int num = Integer.parseInt(word); //转化为int类型
//System.out.println(num);
int[] base = {,};
Pi test = new Pi(base);
int a= ; // 是否在扇形区域内的标志符 1:在扇形区域内 2:不在扇形区域内
int count = ; // 统计在扇形区域内点的个数
for(int x = ; x < num; x++){
double[] t = test.getNext();
if(t[]*t[]+t[]*t[]<) { //在扇形区域内
a=;
count++; //在扇形区域内的个数加+
}
else { //不在扇形区域内
a=;
} }
double result= count*4.00000000/num; //每个map计算出pi的值
String strresule = String.valueOf(result);
Text textresult = new Text(); /*转换类型为Text */
textresult.set(strresule);
context.write(textresult, one); //写入
}
}
public static class doReducer extends Reducer<Text, IntWritable, Text, IntWritable>{ //reduce 整合输出
private IntWritable result = new IntWritable();
@Override
protected void reduce(Text key, Iterable<IntWritable> values, Context context)
throws IOException, InterruptedException {
int sum = ;
for (IntWritable value : values) {
sum += value.get();
}
result.set(sum);
context.write(key, result);
}
}
}

Hadoop下MapReduce实现Pi值的计算的更多相关文章
- Mapreduce案例之Pi值估算
题目: 这个程序的原理是这样的.假如有一个边长为1的正方形.以正方形的一个端点为圆心,以1为半径,画一个圆弧,于是在正方形内就有了一个直角扇形.在正方形里随机生成若干的点,则有些点是在扇形内,有些点是 ...
- 从Hadoop骨架MapReduce在海量数据处理模式(包括淘宝技术架构)
从hadoop框架与MapReduce模式中谈海量数据处理 前言 几周前,当我最初听到,以致后来初次接触Hadoop与MapReduce这两个东西,我便稍显兴奋,认为它们非常是神奇.而神奇的东西常能勾 ...
- Mapreduce求气温值项目
Mapreduce前提工作 简单的来说map是大数据,reduce是计算<运行时如果数据量不大,但是却要分工做这就比较花时间了> 首先想要使用mapreduce,需要在linux中进行一些 ...
- Hadoop基础-MapReduce的工作原理第二弹
Hadoop基础-MapReduce的工作原理第二弹 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.Split(切片) 1>.MapReduce处理的单位(切片) 想必 ...
- Hadoop基础-MapReduce的工作原理第一弹
Hadoop基础-MapReduce的工作原理第一弹 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 在本篇博客中,我们将深入学习Hadoop中的MapReduce工作机制,这些知识 ...
- Hadoop 新 MapReduce 框架 Yarn 详解【转】
[转自:http://www.ibm.com/developerworks/cn/opensource/os-cn-hadoop-yarn/] 简介: 本文介绍了 Hadoop 自 0.23.0 版本 ...
- Hadoop解析--MapReduce
从本篇博客開始咱们一起来具体了解Hadoop的每一个部分.我们在上篇博客中介绍了HDFS,MapReduce,MapReduce为了更有效率事实上是建立在HDFS之上的.有了分布式的文件系统,我们就能 ...
- hadoop的mapReduce和Spark的shuffle过程的详解与对比及优化
https://blog.csdn.net/u010697988/article/details/70173104 大数据的分布式计算框架目前使用的最多的就是hadoop的mapReduce和Spar ...
- hadoop之mapreduce详解(进阶篇)
上篇文章hadoop之mapreduce详解(基础篇)我们了解了mapreduce的执行过程和shuffle过程,本篇文章主要从mapreduce的组件和输入输出方面进行阐述. 一.mapreduce ...
随机推荐
- Node原生demo
1.=>创建配置模块,作用是先判断是开发环境还是生产环境,并将开发或生产环境的数据库信息和http信息分别筛开,便于选择 2.=>创建数据库模块,作用是连接数据库 3.=>创建路由模 ...
- CentOS7之yum仓库配置
操作系统版本:CentOS Linux release 7.2.1511 (Core) Yum软件版本:yum-3.4.3-132.el7.centos.0.1.noarch Yum主配置文件:/ ...
- SQL Server优化技巧——如何避免查询条件OR引起的性能问题
原文:SQL Server优化技巧--如何避免查询条件OR引起的性能问题 之前写过一篇博客"SQL SERVER中关于OR会导致索引扫描或全表扫描的浅析",里面介绍了OR可能会引起 ...
- redis哨兵sentinel.conf文件
关闭保护模式 //17行 protected-mode no 端口号 //21 port 26379 后台启动 //26 daemonize yes //84行 主机的ip加端口号 2 为票数 sen ...
- Javascript去掉base64中的回车换行
给天津海关开发手机插件. 他们的API返回的文件base64遵循了RFC822规定,即BASE64编码每76个字符,还需要加上一个回车换行. 这就导致了我的Ant Design Mobile图片控件不 ...
- Spring Boot 面试总结(一)
1.使用 Spring Boot 前景? 多年来,随着新功能的增加,spring变得越来越复杂.只需访问https://spring.io/projects页面,我们就会看到可以在我们的应用程序中使用 ...
- 后缀数组 LCP--模板题
题意: 给你S串和T串,用T串的所有前缀去匹配S串(匹配值是最长公共子串). 问你总值相加是多少. 思路: 先把两个S,T串倒过来,再拼接 S#T 合成一串,跑一下后缀数组 在排序好的rank里计算每 ...
- Python特色数据类型--列表
#list[起始索引:终止索引(不包含):步长间隔] list1[5:8] #步长省略则默认为1 #修改元素列表 #列表是一种可变的数据类型,所以可以修改内容 list1 = [0,1,2,3,4] ...
- Gluster的搭建和使用
Gluster的搭建和使用 序言 我们为什么要去使用分布式存储,在一家大型公司或者大规模的集群中,大家可能会经常遇到一个问题,我的数据怎么存放,放在那,数据空间不够了怎么办,这些问题经常困扰着我们. ...
- JavaScript使用纯函数避免bug
纯函数 一.纯函数 定义:纯函数是指不依赖并且不修改其作用域之外的函数.通过以下几个示例来认识纯函数: var a = 10; //纯函数 function foo(num){ return num ...