Hadoop下MapReduce实现Pi值的计算
Hadoop自带的例子中,有一个计算Pi值的例子。
这个程序的原理是这样的。假如有一个边长为1的正方形。以正方形的一个端点为圆心,以1为半径,画一个圆弧,于是在正方形内就有了一个直角扇形。在正方形里随机生成若干的点,则有些点是在扇形内,有些点是在扇形外。正方形的面积是1,扇形的面积是0.25*Pi。设点的数量一共是n,扇形内的点数量是nc,在点足够多足够密集的情况下,会近似有nc/n的比值约等于扇形面积与正方形面积的比值,也就是nc/n= 0.25*Pi/1,即Pi = 4*nc/n。
在正方形内生成的样本点越多,计算Pi值越精确,这样,这个问题就很适合用Hadoop来处理啦。假设要在正方形内生成1000万个点,可以设置10个Map任务,每个Map任务处理100万个点,也可以设置100个Map任务,每个Map任务处理10万个点。
package mapreduce1;
/*
* @create by 刘大哥
* 2019年9月3日
* 利用MapReduce计算pi值
* */
import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import PI.Pi; public class WordCount {
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
Job job = Job.getInstance();
job.setJobName("WordCount");
job.setJarByClass(WordCount.class);
job.setMapperClass(doMapper.class);
job.setReducerClass(doReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
Path in = new Path("hdfs://192.168.100.129:9000/user/hadoop/p1i.txt"); //输入路径
Path out = new Path("hdfs://192.168.100.129:9000/user/hadoop/out_pi1"); //输出路径
FileInputFormat.addInputPath(job, in);
FileOutputFormat.setOutputPath(job, out);
System.exit(job.waitForCompletion(true) ? : );
}
public static class doMapper extends Mapper<Object, Text, Text, IntWritable>{
private static final IntWritable one = new IntWritable();
@Override
protected void map(Object key, Text value, Context context) throws IOException, InterruptedException {
String line = value.toString();
String word = line.toString(); //读取每个map的数值
//System.out.println(word);
int num = Integer.parseInt(word); //转化为int类型
//System.out.println(num);
int[] base = {,};
Pi test = new Pi(base);
int a= ; // 是否在扇形区域内的标志符 1:在扇形区域内 2:不在扇形区域内
int count = ; // 统计在扇形区域内点的个数
for(int x = ; x < num; x++){
double[] t = test.getNext();
if(t[]*t[]+t[]*t[]<) { //在扇形区域内
a=;
count++; //在扇形区域内的个数加+
}
else { //不在扇形区域内
a=;
} }
double result= count*4.00000000/num; //每个map计算出pi的值
String strresule = String.valueOf(result);
Text textresult = new Text(); /*转换类型为Text */
textresult.set(strresule);
context.write(textresult, one); //写入
}
}
public static class doReducer extends Reducer<Text, IntWritable, Text, IntWritable>{ //reduce 整合输出
private IntWritable result = new IntWritable();
@Override
protected void reduce(Text key, Iterable<IntWritable> values, Context context)
throws IOException, InterruptedException {
int sum = ;
for (IntWritable value : values) {
sum += value.get();
}
result.set(sum);
context.write(key, result);
}
}
}

Hadoop下MapReduce实现Pi值的计算的更多相关文章
- Mapreduce案例之Pi值估算
题目: 这个程序的原理是这样的.假如有一个边长为1的正方形.以正方形的一个端点为圆心,以1为半径,画一个圆弧,于是在正方形内就有了一个直角扇形.在正方形里随机生成若干的点,则有些点是在扇形内,有些点是 ...
- 从Hadoop骨架MapReduce在海量数据处理模式(包括淘宝技术架构)
从hadoop框架与MapReduce模式中谈海量数据处理 前言 几周前,当我最初听到,以致后来初次接触Hadoop与MapReduce这两个东西,我便稍显兴奋,认为它们非常是神奇.而神奇的东西常能勾 ...
- Mapreduce求气温值项目
Mapreduce前提工作 简单的来说map是大数据,reduce是计算<运行时如果数据量不大,但是却要分工做这就比较花时间了> 首先想要使用mapreduce,需要在linux中进行一些 ...
- Hadoop基础-MapReduce的工作原理第二弹
Hadoop基础-MapReduce的工作原理第二弹 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.Split(切片) 1>.MapReduce处理的单位(切片) 想必 ...
- Hadoop基础-MapReduce的工作原理第一弹
Hadoop基础-MapReduce的工作原理第一弹 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 在本篇博客中,我们将深入学习Hadoop中的MapReduce工作机制,这些知识 ...
- Hadoop 新 MapReduce 框架 Yarn 详解【转】
[转自:http://www.ibm.com/developerworks/cn/opensource/os-cn-hadoop-yarn/] 简介: 本文介绍了 Hadoop 自 0.23.0 版本 ...
- Hadoop解析--MapReduce
从本篇博客開始咱们一起来具体了解Hadoop的每一个部分.我们在上篇博客中介绍了HDFS,MapReduce,MapReduce为了更有效率事实上是建立在HDFS之上的.有了分布式的文件系统,我们就能 ...
- hadoop的mapReduce和Spark的shuffle过程的详解与对比及优化
https://blog.csdn.net/u010697988/article/details/70173104 大数据的分布式计算框架目前使用的最多的就是hadoop的mapReduce和Spar ...
- hadoop之mapreduce详解(进阶篇)
上篇文章hadoop之mapreduce详解(基础篇)我们了解了mapreduce的执行过程和shuffle过程,本篇文章主要从mapreduce的组件和输入输出方面进行阐述. 一.mapreduce ...
随机推荐
- spring_mvc入门项目的小总结
1.先搭建一个maven的web项目 ,然后把文件夹完善一下,创建一个java的文件夹和resource的问件夹,并指定他们各自的功能. 导入pom.xml文件的依赖 <properties&g ...
- 选择排序的Python代码实现
对于a[0]~a[n]的数组, 默认a[i]最小,和后面的a[i+1]~a[n]进行比较,把最小的和a[i]交换位置,保证本次循环结束后a[i]是上一次未排序的数据中最小的 写法1 a=[12,2,2 ...
- 【转帖】比df命令更有用的磁盘信息工具
比df命令更有用的磁盘信息工具 http://embeddedlinux.org.cn/emb-linux/entry-level/201310/30-2666.html 除了df fdisk 还有这 ...
- Netty的那些”锁”事
Netty锁事的五个关键点: ① 在意锁的对象和范围 --> 减少粒度 ② 注意锁的对象本身大小 --> 减少空间占用 ③ 注意锁的速度 --> 提高速度 ④不同场景选择不同 ...
- gcc5+opencv4.0.1 "玄学"bug记录
近期需要使用OpenCV中的gpu加速的一些函数,需要重新编译OpenCV库文件. 由于本机安装的cuda9.0对编译器gcc的版本有要求,平时常用的gcc7.0用不了,所以选用了gcc5.5 . O ...
- tp5项目报错no input file specified解决
关于这个问题众多解决方案 1.php版本问题>5.6,把php版本改成5.5版本 2.入口文件同级目录下的.htaccess文件 RewriteRule ^(.*)$ index.php/$1 ...
- MySQL8在CentOS7上的安装
Install_CentOS7_MySQL8_binary.sh #!/bin/bash MySQL_Package=mysql-8.0.16-linux-glibc2.12-x86_64.tar.x ...
- sysbench测试
什么是基准测试 数据库的基准测试是对数据库的性能指标进行定量的.可复现的.可对比的测试. 基准测试与压力测试 基准测试可以理解为针对系统的一种压力测试.但基准测试不关心业务逻辑,更加简单.直接.易于测 ...
- MyBatis学习存档(1)——入门
一.简介 MyBatis的前身是iBatis,本是Apache的一个开源的项目 MyBatis是一个数据持久层(ORM)框架,把实体类和SQL语句之间建立了映射关系,是一种半自动化的ORM实现 MyB ...
- Go语言GOMAXPROCS(调整并发的运行性能)
在 Go语言程序运行时(runtime)实现了一个小型的任务调度器.这套调度器的工作原理类似于操作系统调度线程,Go 程序调度器可以高效地将 CPU 资源分配给每一个任务.传统逻辑中,开发者需要维护线 ...