虽然推荐的是scala,但是还是试一下


 package org.admln.java7OperateSpark;

 import java.util.Arrays;
import java.util.List;
import java.util.regex.Pattern; import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.PairFunction; import scala.Tuple2; public class OperateSpark {
//单词切分分隔符
private static final Pattern SPACE = Pattern.compile(" "); public static void main(String[] args) {
//初始化
SparkConf sparkConf = new SparkConf().setAppName("JavaWordCount").setMaster("spark://hadoop:7077");
JavaSparkContext ctx = new JavaSparkContext(sparkConf); //第二个参数是文件的最小切分
JavaRDD<String> lines = ctx.textFile("hdfs://hadoop:8020/in/spark/javaOperateSpark/wordcount.txt");
JavaRDD<String> words = lines.flatMap(new FlatMapFunction<String,String>() {
public Iterable<String> call(String s) {
return Arrays.asList(SPACE.split(s));
}
}); //划成键值对
JavaPairRDD<String,Integer> ones = words.mapToPair(new PairFunction<String,String,Integer>() {
public Tuple2<String, Integer> call(String t) {
return new Tuple2<String,Integer>(t,1);
}
}); JavaPairRDD<String,Integer> counts = ones.reduceByKey(new Function2<Integer,Integer,Integer>() {
public Integer call(Integer v1, Integer v2) {
return v1 + v2;
}
}); List<Tuple2<String,Integer>> output = counts.collect();
for(Tuple2<?,?> tuple : output) {
System.out.println(tuple._1() + ":" +tuple._2());
}
counts.saveAsTextFile("hdfs://hadoop:8020/out/spark/javaOperateSpark2/");
ctx.stop();
}
}

运行的时候出现了错误

eclipse中为:

Exception in thread "main" java.lang.NoSuchMethodError: com.google.common.hash.HashFunction.hashInt(I)Lcom/google/common/hash/HashCode;
at org.apache.spark.util.collection.OpenHashSet.org$apache$spark$util$collection$OpenHashSet$$hashcode(OpenHashSet.scala:261)
at org.apache.spark.util.collection.OpenHashSet$mcI$sp.getPos$mcI$sp(OpenHashSet.scala:165)
at org.apache.spark.util.collection.OpenHashSet$mcI$sp.contains$mcI$sp(OpenHashSet.scala:102)
at org.apache.spark.util.SizeEstimator$$anonfun$visitArray$2.apply$mcVI$sp(SizeEstimator.scala:214)
at scala.collection.immutable.Range.foreach$mVc$sp(Range.scala:141)
at org.apache.spark.util.SizeEstimator$.visitArray(SizeEstimator.scala:210)
at org.apache.spark.util.SizeEstimator$.visitSingleObject(SizeEstimator.scala:169)
at org.apache.spark.util.SizeEstimator$.org$apache$spark$util$SizeEstimator$$estimate(SizeEstimator.scala:161)
at org.apache.spark.util.SizeEstimator$.estimate(SizeEstimator.scala:155)
at org.apache.spark.util.collection.SizeTracker$class.takeSample(SizeTracker.scala:78)
at org.apache.spark.util.collection.SizeTracker$class.afterUpdate(SizeTracker.scala:70)
at org.apache.spark.util.collection.SizeTrackingVector.$plus$eq(SizeTrackingVector.scala:31)
at org.apache.spark.storage.MemoryStore.unrollSafely(MemoryStore.scala:249)
at org.apache.spark.storage.MemoryStore.putIterator(MemoryStore.scala:136)
at org.apache.spark.storage.MemoryStore.putIterator(MemoryStore.scala:114)
at org.apache.spark.storage.BlockManager.doPut(BlockManager.scala:787)
at org.apache.spark.storage.BlockManager.putIterator(BlockManager.scala:638)
at org.apache.spark.storage.BlockManager.putSingle(BlockManager.scala:992)
at org.apache.spark.broadcast.TorrentBroadcast.writeBlocks(TorrentBroadcast.scala:98)
at org.apache.spark.broadcast.TorrentBroadcast.<init>(TorrentBroadcast.scala:84)
at org.apache.spark.broadcast.TorrentBroadcastFactory.newBroadcast(TorrentBroadcastFactory.scala:34)
at org.apache.spark.broadcast.TorrentBroadcastFactory.newBroadcast(TorrentBroadcastFactory.scala:29)
at org.apache.spark.broadcast.BroadcastManager.newBroadcast(BroadcastManager.scala:62)
at org.apache.spark.SparkContext.broadcast(SparkContext.scala:945)
at org.apache.spark.SparkContext.hadoopFile(SparkContext.scala:695)
at org.apache.spark.SparkContext.textFile(SparkContext.scala:540)
at org.apache.spark.api.java.JavaSparkContext.textFile(JavaSparkContext.scala:184)
at org.admln.java7OperateSpark.OperateSpark.main(OperateSpark.java:27)

shell中为:

Exception in thread "main" java.lang.VerifyError: class org.apache.hadoop.hdfs.protocol.proto.ClientNamenodeProtocolProtos$AddBlockRequestProto overrides final method getUnknownFields.()Lcom/google/protobuf/UnknownFieldSet;
at java.lang.ClassLoader.defineClass1(Native Method)
at java.lang.ClassLoader.defineClass(ClassLoader.java:800)
at java.security.SecureClassLoader.defineClass(SecureClassLoader.java:142)
at java.net.URLClassLoader.defineClass(URLClassLoader.java:449) ... ... at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:606)
at org.apache.spark.deploy.SparkSubmit$.launch(SparkSubmit.scala:358)
at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:75)
at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)

可以看到是protobuf版本和hadoop的冲突了

默认spark1.2.0的protobuf版本为

而hadoop2.2.0的为protobuf2.5.0

所以修改spark中pom.xml后重新编译生成部署包(花费一个多小时)

再运行的话shell端成功。但是eclipse端仍然报那个错误

这是因为我用的maven引用的spark包,存在guava版本冲突,默认为

单独加一个依赖

  <dependency>
<groupId>com.google.guava</groupId>
<artifactId>guava</artifactId>
<version>14.0.1</version>
</dependency>

然后eclipse提交的话不报错了,不过任务一直循环不执行,报告资源不够

WARN TaskSchedulerImpl: Initial job has not accepted any resources; check your cluster UI to ensure that workers are registered and have sufficient memory

然后把核数加到2,内存加到1500M,可是仍然报

INFO SparkDeploySchedulerBackend: Granted executor ID app-20150111003236-0000/3 on hostPort hadoop:34766 with 2 cores, 512.0 MB RAM

也就是说核数改了,但是执行内存改不了,不知道为什么,还有就是同样的程序shell端提交就正常执行,eclipse外部提交就报内存不足

改驱动的内存也不行。

我推测有两种可能的原因

1.spark的BUG,SPARK_DRIVER_MEMORY变量默认是512M,但是外部修改不生效;

2.centos的资源和本机windows的资源混乱了,因为我看到了

ERROR SparkDeploySchedulerBackend: Asked to remove non-existent executor 2

的错误,我本机是4核,虚拟机是2核。


不知道为什么网上没有eclipse提交的示例,应该要不就是本身就不支持,会和客户端资源混乱,要不就是还没人摸透。


java操作spark1.2.0的更多相关文章

  1. es学习-java操作 2.4.0版本

    package esjava; import org.elasticsearch.action.bulk.*;import org.elasticsearch.action.delete.Delete ...

  2. JDBC 4.0 开始Java操作数据库不用再使用 Class.forName加载驱动类了

    JDBC 4.0 开始Java操作数据库不用再使用 Class.forName加载驱动类了 代码示例 转自 https://docs.oracle.com/javase/tutorial/jdbc/o ...

  3. 基于Spark1.3.0的Spark sql三个核心部分

    基于Spark1.3.0的Spark sql三个核心部分: 1.可以架子啊各种结构化数据源(JSON,Hive,and Parquet) 2.可以让你通过SQL,saprk内部程序或者外部攻击,通过标 ...

  4. Spark-1.6.0中的Sort Based Shuffle源码解读

    从Spark-1.2.0开始,Spark的Shuffle由Hash Based Shuffle升级成了Sort Based Shuffle.即Spark.shuffle.manager从Hash换成了 ...

  5. Spark1.5.0 + Hadoop2.7.1整合

    Hadoop2.7.1已经配置完毕. Hosts分配如下: master 172.16.15.140 slave1 172.15.15.141 slave2 172.16.15.142 一.安装Sca ...

  6. 搭建Hadoop2.6.0+Spark1.1.0集群环境

    前几篇文章主要介绍了单机模式的hadoop和spark的安装和配置,方便开发和调试.本文主要介绍,真正集群环境下hadoop和spark的安装和使用. 1. 环境准备 集群有三台机器: master: ...

  7. spark 1.6.0 安装与配置(spark1.6.0、Ubuntu14.04、hadoop2.6.0、scala2.10.6、jdk1.7)

    前几天刚着实研究spark,spark安装与配置是入门的关键,本人也是根据网上各位大神的教程,尝试配置,发现版本对应最为关键.现将自己的安装与配置过程介绍如下,如有兴趣的同学可以尝试安装.所谓工欲善其 ...

  8. 【MongoDB for Java】Java操作MongoDB

    上一篇文章: http://www.cnblogs.com/hoojo/archive/2011/06/01/2066426.html介绍到了在MongoDB的控制台完成MongoDB的数据操作,通过 ...

  9. Java操作Oracle

    public class DBCon { // 数据库驱动对象 public static final String DRIVER = "oracle.jdbc.driver.OracleD ...

随机推荐

  1. C++11用于元编程的类别属性

    [C++11用于元编程的类别属性] 许多算法能作用在不同的数据类别; C++ 模板支持泛型,这使得代码能更紧凑和有用.然而,算法经常会需要目前作用的数据类别的信息.这种信息可以通过类别属性 (type ...

  2. HDU 4602 Magic Ball Game(离线处理,树状数组,dfs)

    Magic Ball Game Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) ...

  3. stm32F4各个库文件的作用分析

    system_stm32f4xx.c:This file contains the system clock configuration for STM32F4xx devices. /** **** ...

  4. hdu 1260 Tickets

    http://acm.hdu.edu.cn/showproblem.php?pid=1260 题目大意:n个人买票,每个人买票都花费时间,相邻的两个人可以一起买票以节约时间: 所以一个人可以自己买票也 ...

  5. Codeforces 706 C. Hard problem (dp)

    题目链接:http://codeforces.com/problemset/problem/706/C 给你n个字符串,可以反转任意一个字符串,反转每个字符串都有其对应的花费ci. 经过操作后是否能满 ...

  6. POJ1338Ugly Numbers(DP)

    http://poj.org/problem?id=1338 第一反应就是DP,DP[i] = min{2*DP[j], 3*DP[k], 5*DP[p] j,k,p<i};于是枚举一下0-i- ...

  7. POJ1837 Balance(DP)

    POJ1837http://poj.org/problem?id=1837 题目大意就是说有一个称上有C个挂钩,告诉你每个挂钩的位置,现在有G个重物,求是之平衡的方法数. 转化一下:DP[i][j]表 ...

  8. MySQL 日期时间

    NOW()函数以`'YYYY-MM-DD HH:MM:SS'返回当前的日期时间,可以直接存到DATETIME字段中.CURDATE()以’YYYY-MM-DD’的格式返回今天的日期,可以直接存到DAT ...

  9. uva208 - Firetruck

    Firetruck The Center City fire department collaborates with the transportation department to maintai ...

  10. [CentOS]yum安装postgres和ntfs-3g

    卸载已经存在的postgreSql yum list | grep postgresyum remove postgresql-server 获取rpm文件并安装rpm -i http://yum.p ...