bzoj1002:[FJOI2007]轮状病毒
思路:一道很裸的生成树计数问题,然而要高精度,而且听说直接行列式求值会被卡精度,所以可以模拟行列式求值的过程得到递推公式:f[i]=3*f[i-1]-f[i-2]+2,证明详见vfk博客:
http://vfleaking.blog.163.com/blog/static/17480763420119685112649/
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
#define maxn 105
#define mod 100000000 int n; struct bignum{
int len;
int a[maxn*10];
bool operator <(const bignum &b)const{
if (len!=b.len) return len<b.len;
for (int i=len;i;i--) if (a[i]<b.a[i]) return 1;
return 0;
}
bignum operator +(const bignum &b){
bignum c;c.len=max(len,b.len);memset(c.a,0,sizeof(c.a));
for (int i=1;i<=c.len;i++){
c.a[i]+=a[i]+b.a[i];
if (c.a[i]>mod) c.a[i+1]=c.a[i]/mod,c.a[i]%=mod;
}
if (c.a[c.len+1]) c.len++;
return c;
}
bignum operator -(const bignum &b){
bignum c;c.len=max(len,b.len);memset(c.a,0,sizeof(c.a));
for (int i=1;i<=c.len;i++){
c.a[i]=a[i]-b.a[i];
if (c.a[i]<0) c.a[i]+=mod,a[i+1]--;
}
for (;!c.a[c.len]&&c.len>1;c.len--);
return c;
}
void initialize(char *s){
int l=strlen(s+1);
for (int i=l;i>=1;i-=8){
len++;int x=pow(10,min(i-1,7)),t=max(i-8+1,1);
while (x) a[len]+=(s[t]-'0')*x,t++,x/=10;
}
}
void print(){
printf("%d",a[len]);
for (int i=len-1;i;i--) printf("%08d",a[i]);
}
}f[maxn],t; int main(){
scanf("%d",&n);f[1].a[1]=1,f[1].len=1,f[2].a[1]=5,f[2].len=1,t.a[1]=2,t.len=1;
for (int i=3;i<=n;i++) f[i]=f[i-1]+f[i-1]+f[i-1]-f[i-2]+t;
f[n].print();
return 0;
}
bzoj1002:[FJOI2007]轮状病毒的更多相关文章
- BZOJ1002 FJOI2007 轮状病毒 【基尔霍夫矩阵+高精度】
BZOJ1002 FJOI2007 轮状病毒 Description 轮状病毒有很多变种,所有轮状病毒的变种都是从一个轮状基产生的.一个N轮状基由圆环上N个不同的基原子和圆心处一个核原子构成的,2个原 ...
- [bzoj1002][FJOI2007]轮状病毒_递推_高精度
轮状病毒 bzoj-1002 FJOI-2007 Description 轮状病毒有很多变种,所有轮状病毒的变种都是从一个轮状基产生的.一个N轮状基由圆环上N个不同的基原子和圆心处一个核原子构成的,2 ...
- bzoj1002: [FJOI2007]轮状病毒(基尔霍夫矩阵)
1002: [FJOI2007]轮状病毒 题目:传送门 题解: 决定开始板刷的第一题... 看到这题的时候想:这不就是求有多少种最小生成树的方式吗? 不会啊!!!%题解... 什么鬼?基尔霍夫矩阵?? ...
- BZOJ1002[FJOI2007]轮状病毒
Description 轮状病毒有很多变种,所有轮状病毒的变种都是从一个轮状基产生的.一个N轮状基由圆环上N个不同的基原子 和圆心处一个核原子构成的,2个原子之间的边表示这2个原子之间的信息通道.如下 ...
- [bzoj1002][FJOI2007 轮状病毒] (生成树计数+递推+高精度)
Description 轮状病毒有很多变种,所有轮状病毒的变种都是从一个轮状基产生的.一个N轮状基由圆环上N个不同的基原子和圆心处一个核原子构成的,2个原子之间的边表示这2个原子之间的信息通道.如下图 ...
- [BZOJ1002] [FJOI2007] 轮状病毒 (数学)
Description 给定n(N<=100),编程计算有多少个不同的n轮状病毒. Input 第一行有1个正整数n. Output 将编程计算出的不同的n轮状病毒数输出 Sample Inpu ...
- [luogu2144][bzoj1002][FJOI2007]轮状病毒【高精度+斐波那契数列+基尔霍夫矩阵】
题目描述 轮状病毒有很多变种,所有轮状病毒的变种都是从一个轮状基产生的.一个N轮状基由圆环上N个不同的基原子和圆心处一个核原子构成的,2个原子之间的边表示这2个原子之间的信息通道.如下图所示 N轮状病 ...
- bzoj1002: [FJOI2007]轮状病毒 生成树计数
轮状病毒有很多变种,所有轮状病毒的变种都是从一个轮状基产生的.一个N轮状基由圆环上N个不同的基原子和圆心处一个核原子构成的,2个原子之间的边表示这2个原子之间的信息通道.如下图所示 N轮状病毒的产生规 ...
- BZOJ1002:[FJOI2007]轮状病毒(找规律,递推)
Description 轮状病毒有很多变种,所有轮状病毒的变种都是从一个轮状基产生的.一个N轮状基由圆环上N个不同的基原子 和圆心处一个核原子构成的,2个原子之间的边表示这2个原子之间的信息通道.如下 ...
- [bzoj1002] [FJOI2007]轮状病毒轮状病毒(基尔霍夫矩阵)
Description 轮状病毒有很多变种,所有轮状病毒的变种都是从一个轮状基产生的.一个N轮状基由圆环上N个不同的基原子 和圆心处一个核原子构成的,2个原子之间的边表示这2个原子之间的信息通道.如下 ...
随机推荐
- java 学习基础学习单词及java关键词
在JAVA学习中我们难免会犯一些逻辑错误,语法错误,和一些运行错误,对于英语不好的人,就的记下下面的2常用单词,有助于我们提高在使用软件编写代码的速度和代码调试,能更便捷的找出错误,知道1中的保溜关键 ...
- CentOS 6.5 下载地址
CentOS 6.5 主要改动 Precision Time Protocol(精确时间协议)—— 原先是项技术预览 —— 现在已获全面支持.以下驱动程序支持网络时间戳印:bnx2x.tg3.e100 ...
- Triangles
1010: Triangles Time Limit: 2 Sec Memory Limit: 128 MB Submit: 18 Solved: 8 Description You are ...
- Postfix上的反垃圾邮件的四个方法
在介绍如何配置Postfix的smtp配置之前有必要首先介绍一下它的背景和特点.Postfix是一个由IBM资助下由WietseVenema 负责开发的自由软件工程的一个产物,其目的是为用户提供除se ...
- iOS开发:AVPlayer实现流音频边播边存
1. AVPlayer简介 AVPlayer存在于AVFoundation中,可以播放视频和音频,可以理解为一个随身听 AVPlayer的关联类: AVAsset:一个抽象类,不能直接使用,代表一个要 ...
- android学习日记06--View视图
一.android 界面开发 1.三个重要的类:View视图.Canvas画布.Paint画笔2.android 界面开发常用三种视图 View --只能在主线程中更新,没有缓存 ...
- ajax表单提交插件jquery.form.js的运用
该插件提交的数据包含上传的图片. 1.先导入jquery.form.js 2.form表单的元素: <form id="form2_form" method="po ...
- android127 zhihuibeijing 屏幕适配
## 屏幕适配 ## 加载不同分辨率的图片是根据手机的像素来加载不同分辨率文件夹下的图片. > 先在主流屏幕来发: *(分辨率和手机屏幕大小无关), 遵循原则: 不用AbsoluteLayout ...
- 管道技巧-while read line
http://blog.csdn.net/hunanchenxingyu/article/details/9998089
- C#_LINQ(LINQ to Entities)
LINQ to Entities 是 LINQ 中最吸引人的部分.它让你可以使用标准的 C# 对象与数据库的结构和数据打交道.使用 LINQ to Entities 时,LINQ 查询在后台转换为 S ...