sklearn包
sklearn官方学习资料
https://scikit-learn.org/stable/user_guide.html
1 Supervised learning监督学习
1.1 线性模型
1.2 线性模型和二次判别分析
1.3 核岭回归
1.4 SVM
1.5 随机梯度下降
1.6 最近邻
1.7 高斯过程
1.8 交叉分解cross decomposition
1.9 朴素贝叶斯
1.10 决策树
1.11 集成算法
1.12 多类别算法
1.13 特征选择
1.14 半监督
1.15 保序回归
1.16 probability calibration
1.17 神经网络
2 非监督学习
2.1 高斯混合模型
2.2 流型学习
2.3 聚类
2.4 双聚类
2.5 矩阵分解
2.6 协方差估计
2.7 异常点、离群点检测
2.8 密度估计
2.9 神经网络
3 模型选择和评估
3.1 交叉验证
3.2 调参
3.3 指标和评分
3.4 模型的持续性
3.5 验证曲线
4 检查inspection
4.1 依赖曲线
4.2 排序(置换)特征重要性
5 可视化
6 数据转化
6.1 管道
6.2 特征抽取
6.3 预处理数据
6.4 缺失值插补
6.5 非监督降维
6.6 随机投影
6.7 核近似
6.8 pairwise metrics,affinities and kernels
6.9 转化预测目标
7 数据集
6.3 preprocessing data数据预处理
https://scikit-learn.org/stable/modules/preprocessing.html#standardization-or-mean-removal-and-variance-scaling
归一化、正则化、标准化的区别
https://blog.csdn.net/tianguiyuyu/article/details/80694669
6.3.1 Standardization, or mean removal and variance scaling标准化(均值为0,方差为1)
preprocessing.scale
preprocessing.StandardScaler 在训练样本上使用后,可以同时应用到测试样本
6.3.1.1. Scaling features to a range
preprocessing.MinMaxScaler 把数据标准化到指定的最大值最小值之间
preprocessing.MaxAbsScaler 把数据标准化到指定的最大的绝对值之间
6.3.1.2. Scaling sparse data
preprocessing.MaxAbsScaler(要用transform API)
preprocessing.maxabs_scale
6.3.1.3. Scaling data with outliers
robust_scale
RobustScaler(要用transform API)
6.3.1.4. Centering kernel matrices
KernalCenterer
6.3.2. Non-linear transformation 非线性转化
6.3.2.1. Mapping to a Uniform distribution
QuantileTransformer
quantile_transform
6.3.2.2. Mapping to a Gaussian distribution
PowerTransformer
6.3.3. Normalization 归一化
Normalization is the process of scaling individual samples to have unit norm.
normalize
Normalizer(要用transform API)
6.3.4. Encoding categorical features
OrdinalEncoder(顺序编码)
OneHotEncoder
6.3.5. Discretization离散化
For instance, pre-processing with a discretizer can introduce nonlinearity to linear models.
6.3.5.1. K-bins discretization
The ‘uniform’ strategy uses constant-width bins. The ‘quantile’ strategy uses the quantiles values to have equally populated bins in each feature. The ‘kmeans’ strategy defines bins based on a k-means clustering procedure performed on each feature independently.
6.3.5.2. Feature binarization(二值化)
preprocessing.Binarizer(threshold=1.1)
6.3.6. Imputation of missing values
6.3.7. Generating polynomial features
from sklearn.preprocessing import PolynomialFeatures
PolynomialFeatures(degree=3, interaction_only=True)
6.3.8. Custom transformers(定制化转化)
convert an existing Python function into a transformer to assist in data cleaning or processing
sklearn包的更多相关文章
- sklearn包中有哪些数据集你都知道吗?
注册了博客园一晃有3个月了,同时接触机器学习也断断续续的算是有1个月了.今天就用机器学习神器sklearn包的相关内容作为我的开篇文章吧. 本文将对sklearn包中的数据集做一个系统介绍,并简单说一 ...
- Python: 安装 sklearn 包出现错误的解决方法
今天在安装 Python 的 sklearn 包时出现了 Cannot uninstall 'numpy' 和 Cannot uninstall 'scipy' 错误,下面记录了我尝试了很多网上的方法 ...
- sklearn包源码分析(二)——ensemble(未完成)
网络资源 sklearn包tree模型importance解析
- sklearn包学习
1首先是sklearn的官网:http://scikit-learn.org/stable/ 在官网网址上可以看到很多的demo,下边这张是一张非常有用的流程图,在这个流程图中,可以根据数据集的特征, ...
- 调用sklearn包中的PLA算法[转载]
转自:https://blog.csdn.net/u010626937/article/details/72896144#commentBox 1.Python的机器学习包sklearn中也包含了感知 ...
- sklearn包源码分析(一)--neighbors
python如何查看内置函数的用法及其源码? 在anaconda的安装目录下,有一块会放着我们安装的所有包,在里面可以找到所有的包 找到scikit learn包,进入 这里面又有了多个子包,每个子包 ...
- python matplotlib绘图/sklearn包--make_blobs()
1.make_bolbs() 函数 from sklearn.datasets.samples_generator import make_blobs import numpy as np impor ...
- 安装Python的机器学习包Sklearn 出错解决方法
1 首先须要安装Cython.网上下载后进行本地安装 python setup.py install 2 下载Sklearn包,https://pypi.python.org/pypi/scikit- ...
- 机器学习之sklearn——SVM
sklearn包对于SVM可输出支持向量,以及其系数和数目: print '支持向量的数目: ', clf.n_support_ print '支持向量的系数: ', clf.dual_coef_ p ...
随机推荐
- s5pc100开发板linux内核移植
相关软件下载地址:http://pan.baidu.com/s/16yo8Y 应用于FSC100开发板 交叉编译工具:arm-cortex_a8-linux-gnueabi-gcc linux-2.6 ...
- HZNU-ACM寒假集训Day8小结 最小生成树
最小生成树(无向图) Kruskal 给所有边按从小到大排序 形成环则不选择(利用并查集) P1546 最短网络 https://www.luogu.com.cn/problem/P1546 #i ...
- SQL约束攻击
本文转载自https://blog.csdn.net/kkr3584/article/details/69223010 目前值得高兴的是,开发者在建立网站时,已经开始关注安全问题了--几乎每个开发者都 ...
- js保留的关键字
js保留的关键字 break else new var case finally return void catch for switch while continue function this w ...
- jquery关于Select元素的操作
jQuery获取Select元素,并选择的Text和Value: $("#select_id").change(function(){//code...}); ...
- linux常用命令之------文件操作、文件查看、权限、打包压缩
1.一般公司把linux作为自己的应用服务器,将应用和服务器部署在上面 2.测试一般用来打包.压缩.查日志,写一个简单的shell 获得linux服务器的方式 a:网上租一台云服务器 b:安装vmwa ...
- Tensorflow学习教程------简单练一波,线性模型
#coding:utf-8 import tensorflow as tf import numpy as np #使用numpy 生成100个随机点 x_data = np.random.rand( ...
- Tensorflow学习教程------利用卷积神经网络对mnist数据集进行分类_利用训练好的模型进行分类
#coding:utf-8 import tensorflow as tf from PIL import Image,ImageFilter from tensorflow.examples.tut ...
- offsetof宏与container_of宏
offsetof宏与container_of宏1.由结构体指针进而访问各元素的原理(1)通过结构体整体变量来访问其中各个元素,本质上是通过指针方式来访问的,形式上是通过.的方式来访问的(这个时候其实是 ...
- ComboPooledDataSource连接mysql
Dbutils学习(介绍和入门) 一:Dbutils是什么?(当我们很难理解一个东西的官方解释的时候,就让我们记住它的作用) Dbutils:主要是封装了JDBC的代码,简化dao层 ...