样本:

使用的算法:

代码:

import numpy as np
import pandas as pd
import datetime from sklearn.impute import SimpleImputer #预处理模块
from sklearn.model_selection import train_test_split #训练集和测试集模块
from sklearn.metrics import classification_report #预测结果评估模块 from sklearn.neighbors import KNeighborsClassifier #K近邻分类器
from sklearn.tree import DecisionTreeClassifier #决策树分类器
from sklearn.naive_bayes import GaussianNB #高斯朴素贝叶斯函数 starttime = datetime.datetime.now() def load_datasets(feature_paths, label_paths):
feature = np.ndarray(shape=(0, 41)) #列数量和特征维度为41
label = np.ndarray(shape=(0, 1))
for file in feature_paths:
#逗号分隔符读取特征数据,将问号替换标记为缺失值,文件不包含表头
df = pd.read_table(file, delimiter=',', na_values='?', header=None)
#df = df.fillna(df.mean()) #若SimpleImputer无法处理nan,则用pandas本身处理
#使用平均值补全缺失值,然后将数据进行补全
imp = SimpleImputer(missing_values=np.nan, strategy='mean') #此处与教程不同,版本更新,需要使用最新的函数填充NAn,暂不明如何调用
imp.fit(df) #训练预处理器 此句有问题
df = imp.transform(df) #生产预处理结果
feature = np.concatenate((feature, df))#将新读入的数据合并到特征集中 for file in label_paths:
df = pd.read_table(file, header=None)
#将新读入的数据合并到标签集合中
label = np.concatenate((label, df))
#将标签归整为一维向量
label = np.ravel(label)
return feature, label if __name__ == '__main__':
#读取文件,根据本地目录文件夹而设定
path = 'D:\python_source\Machine_study\mooc_data\classification\dataset/'
featurePaths, labelPaths = [], []
for i in range(0, 5, 1): #chr(ord('A') + i)==B/C/D
featurePath = path + chr(ord('A') + i) + '/' + chr(ord('A') + i) + '.feature'
featurePaths.append(featurePath)
labelPath = path + chr(ord('A') + i) + '/' + chr(ord('A') + i) + '.label'
labelPaths.append(labelPath)
#将前4个数据作为训练集读入
x_train, y_train = load_datasets(featurePaths[:4], labelPaths[:4])
#将最后一个数据作为测试集读入
x_test, y_test = load_datasets(featurePaths[4:], labelPaths[4:])
#使用全量数据作为训练集,借助函数将训练数据打乱,便于后续分类器的初始化和训练
x_train, x_, y_train, y_ = train_test_split(x_train, y_train, test_size=0.0) print('Start training knn')
knn = KNeighborsClassifier().fit(x_train, y_train) #使用KNN算法进行训练
print('Training done')
answer_knn = knn.predict(x_test) print('Start training DT')
dt = DecisionTreeClassifier().fit(x_train, y_train) #使用决策树算法进行训练
print('Training done')
answer_dt = dt.predict(x_test)
print('Prediction done') print('Start training Bayes')
gnb = GaussianNB().fit(x_train, y_train) #使用贝叶斯算法进行训练
print('Training done')
answer_gnb = gnb.predict(x_test)
print('Prediction done') #对分类结果从 精确率precision 召回率recall f1值fl-score和支持度support四个维度进行衡量
print('\n\nThe classification report for knn:')
print(classification_report(y_test, answer_knn))
print('\n\nThe classification report for DT:')
print(classification_report(y_test, answer_dt))
print('\n\nThe classification report for Bayes:')
print(classification_report(y_test, answer_gnb))
endtime = datetime.datetime.now()
print(endtime - starttime) #时间统计

效果图:

2019-08-01【机器学习】有监督学习之分类 KNN,决策树,Nbayes算法实例 (人体运动状态信息评级)的更多相关文章

  1. 吴裕雄 python 机器学习——半监督学习标准迭代式标记传播算法LabelPropagation模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import metrics from sklearn import d ...

  2. 【纪中集训】2019.08.01【NOIP提高组】模拟 A 组TJ

    T1 Description 给定一个\(N*N(N≤8)\)的矩阵,每一格有一个0~5的颜色.每次可将左上角的格子所在连通块变为一种颜色,求最少操作数. Solution IDA*=启发式迭代加深 ...

  3. 机器学习--最邻近规则分类KNN算法

    理论学习: 3. 算法详述        3.1 步骤:      为了判断未知实例的类别,以所有已知类别的实例作为参照      选择参数K      计算未知实例与所有已知实例的距离      选 ...

  4. 机器学习——十大数据挖掘之一的决策树CART算法

    本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是机器学习专题的第23篇文章,我们今天分享的内容是十大数据挖掘算法之一的CART算法. CART算法全称是Classification ...

  5. 【Todo】【转载】Spark学习 & 机器学习(实战部分)-监督学习、分类与回归

    理论原理部分可以看这一篇:http://www.cnblogs.com/charlesblc/p/6109551.html 这里是实战部分.参考了 http://www.cnblogs.com/shi ...

  6. Python 机器学习实战 —— 监督学习(下)

    前言 近年来AI人工智能成为社会发展趋势,在IT行业引起一波热潮,有关机器学习.深度学习.神经网络等文章多不胜数.从智能家居.自动驾驶.无人机.智能机器人到人造卫星.安防军备,无论是国家级军事设备还是 ...

  7. Python 机器学习实战 —— 监督学习(上)

    前言 近年来AI人工智能成为社会发展趋势,在IT行业引起一波热潮,有关机器学习.深度学习.神经网络等文章多不胜数.从智能家居.自动驾驶.无人机.智能机器人到人造卫星.安防军备,无论是国家级军事设备还是 ...

  8. python_机器学习_监督学习模型_决策树

    决策树模型练习:https://www.kaggle.com/c/GiveMeSomeCredit/overview 1. 监督学习--分类 机器学习肿分类和预测算法的评估: a. 准确率 b.速度 ...

  9. 机器学习实战 - 读书笔记(07) - 利用AdaBoost元算法提高分类性能

    前言 最近在看Peter Harrington写的"机器学习实战",这是我的学习笔记,这次是第7章 - 利用AdaBoost元算法提高分类性能. 核心思想 在使用某个特定的算法是, ...

随机推荐

  1. css清除浮动影响

    将清除浮动代码添加到重置样式表中,随时可以调用 }}.clearfix:after{clear:both} 给需要清除浮动影响的元素添加class名 --- clearfix 例: <!-- c ...

  2. PHP - json_decode returns NULL的解决办法

    碰到了PHP json_decode returns NULL, 肿么办? 1. google 一下, 关键字:PHP json_decode NULL 首先你能看到我这个这个帖子:) http:// ...

  3. HDU 4325 Flowers 树状数组+离散化

    Flowers Problem Description As is known to all, the blooming time and duration varies between differ ...

  4. 通过带Flask的REST API在Python中部署PyTorch

    在本教程中,我们将使用Flask来部署PyTorch模型,并用讲解用于模型推断的 REST API.特别是,我们将部署一个预训练的DenseNet 121模 型来检测图像. 备注: 可在GitHub上 ...

  5. 使用electron和node-serialport的环境搭建过程

    项目运行所需环境 1,必须安装nodejs 附上node下载地址-Nodejs node安装过程简单, 一直next就行了,我安装的版本是12.16.1,可以在powershell中通过 node - ...

  6. iOS提审笔记

    查看苹果各大系统的服务状态:中国区服务:https://www.apple.com/cn/support/systemstatus/美国区服务:https://developer.apple.com/ ...

  7. 《java编程思想》一切都是对象

    1. 用引用操纵对象 在Java中一切皆对象,我们平常在对java中的类进行操作时,其实操作的不是对象本身而是对象的引用.我们可以将这想象成用遥控器(引用)操作电视机(对象),只要握住这个遥控器,就能 ...

  8. IDEA+EasyCode实现代码生成

    IDEA+EasyCode实现代码生成 Easy Code介绍 EasyCode是基于IntelliJ IDEA开发的代码生成插件,支持自定义任意模板(Java,html,js,xml).只要是与数据 ...

  9. IOS部分APP使用burpsuite抓不到包原因

    曾经在ios12的时候,iphone通过安装burpsuite的ca证书并开启授权,还可以抓到包,升级到ios13后部分app又回到以前连上代理就断网的情况. 分析:ios(13)+burpsuite ...

  10. Fetch+SpringBoot跨域请求设置

    两种方法从SpringBoot的方向解决跨域问题 今天搭建博客的时候,尝试性的传递数据,发现浏览器报了这个错误 -blocked by CORS policy: No 'Access-Control- ...