一、流处理

1.1 静态数据处理

在流处理之前,数据通常存储在数据库,文件系统或其他形式的存储系统中。应用程序根据需要查询数据或计算数据。这就是传统的静态数据处理架构。Hadoop 采用 HDFS 进行数据存储,采用 MapReduce 进行数据查询或分析,这就是典型的静态数据处理架构。

1.2 流处理

而流处理则是直接对运动中的数据的处理,在接收数据时直接计算数据。

大多数数据都是连续的流:传感器事件,网站上的用户活动,金融交易等等 ,所有这些数据都是随着时间的推移而创建的。

接收和发送数据流并执行应用程序或分析逻辑的系统称为流处理器。流处理器的基本职责是确保数据有效流动,同时具备可扩展性和容错能力,Storm 和 Flink 就是其代表性的实现。

流处理带来了静态数据处理所不具备的众多优点:

  • 应用程序立即对数据做出反应:降低了数据的滞后性,使得数据更具有时效性,更能反映对未来的预期;
  • 流处理可以处理更大的数据量:直接处理数据流,并且只保留数据中有意义的子集,并将其传送到下一个处理单元,逐级过滤数据,降低需要处理的数据量,从而能够承受更大的数据量;
  • 流处理更贴近现实的数据模型:在实际的环境中,一切数据都是持续变化的,要想能够通过过去的数据推断未来的趋势,必须保证数据的不断输入和模型的不断修正,典型的就是金融市场、股票市场,流处理能更好的应对这些数据的连续性的特征和及时性的需求;
  • 流处理分散和分离基础设施:流式处理减少了对大型数据库的需求。相反,每个流处理程序通过流处理框架维护了自己的数据和状态,这使得流处理程序更适合微服务架构。

二、Spark Streaming

2.1 简介

Spark Streaming 是 Spark 的一个子模块,用于快速构建可扩展,高吞吐量,高容错的流处理程序。具有以下特点:

  • 通过高级 API 构建应用程序,简单易用;
  • 支持多种语言,如 Java,Scala 和 Python;
  • 良好的容错性,Spark Streaming 支持快速从失败中恢复丢失的操作状态;
  • 能够和 Spark 其他模块无缝集成,将流处理与批处理完美结合;
  • Spark Streaming 可以从 HDFS,Flume,Kafka,Twitter 和 ZeroMQ 读取数据,也支持自定义数据源。

2.2 DStream

Spark Streaming 提供称为离散流 (DStream) 的高级抽象,用于表示连续的数据流。 DStream 可以从来自 Kafka,Flume 和 Kinesis 等数据源的输入数据流创建,也可以由其他 DStream 转化而来。在内部,DStream 表示为一系列 RDD

2.3 Spark & Storm & Flink

storm 和 Flink 都是真正意义上的流计算框架,但 Spark Streaming 只是将数据流进行极小粒度的拆分,拆分为多个批处理,使得其能够得到接近于流处理的效果,但其本质上还是批处理(或微批处理)。

参考资料

  1. Spark Streaming Programming Guide
  2. What is stream processing?

系列传送门

入门大数据---Spark_Streaming与流处理的更多相关文章

  1. 入门大数据---Spark_Streaming整合Flume

    一.简介 Apache Flume 是一个分布式,高可用的数据收集系统,可以从不同的数据源收集数据,经过聚合后发送到分布式计算框架或者存储系统中.Spark Straming 提供了以下两种方式用于 ...

  2. 入门大数据---Spark_Streaming基本操作

    一.案例引入 这里先引入一个基本的案例来演示流的创建:获取指定端口上的数据并进行词频统计.项目依赖和代码实现如下: <dependency> <groupId>org.apac ...

  3. 入门大数据---Spark_Streaming整合Kafka

    一.版本说明 Spark 针对 Kafka 的不同版本,提供了两套整合方案:spark-streaming-kafka-0-8 和 spark-streaming-kafka-0-10,其主要区别如下 ...

  4. 大数据平台消息流系统Kafka

    Kafka前世今生 随着大数据时代的到来,数据中蕴含的价值日益得到展现,仿佛一座待人挖掘的金矿,引来无数的掘金者.但随着数据量越来越大,如何实时准确地收集并分析如此大的数据成为摆在所有从业人员面前的难 ...

  5. 入门大数据---Flink学习总括

    第一节 初识 Flink 在数据激增的时代,催生出了一批计算框架.最早期比较流行的有MapReduce,然后有Spark,直到现在越来越多的公司采用Flink处理.Flink相对前两个框架真正做到了高 ...

  6. 入门大数据---Flume整合Kafka

    一.背景 先说一下,为什么要使用 Flume + Kafka? 以实时流处理项目为例,由于采集的数据量可能存在峰值和峰谷,假设是一个电商项目,那么峰值通常出现在秒杀时,这时如果直接将 Flume 聚合 ...

  7. 大数据-07-Spark之流数据

    摘自 http://dblab.xmu.edu.cn/blog/1084-2/ 简介 DStream是Spark Streaming的编程模型,DStream的操作包括输入.转换和输出. Spark ...

  8. 入门大数据---SparkSQL外部数据源

    一.简介 1.1 多数据源支持 Spark 支持以下六个核心数据源,同时 Spark 社区还提供了多达上百种数据源的读取方式,能够满足绝大部分使用场景. CSV JSON Parquet ORC JD ...

  9. 入门大数据---Hadoop是什么?

    简单概括:Hadoop是由Apache组织使用Java语言开发的一款应对大数据存储和计算的分布式开源框架. Hadoop的起源 2003-2004年,Google公布了部分GFS和MapReduce思 ...

随机推荐

  1. go语言的主要特征

    go语言主要特征 1.自动立即回收. 2.更丰富的内置类型. 3.函数多返回值. 4.错误处理. 5.匿名函数和闭包. 6.类型和接口. 7.并发编程. 8.反射. 9.语言交互性. golang文件 ...

  2. Rocket - tilelink - BusWrapper

    https://mp.weixin.qq.com/s/03BvgTNQtD75Guco6gUGQg   简单介绍BusWrapper的实现.   1. HasTLBusParams   定义SoC的挂 ...

  3. Java实现 LeetCode 665 非递减数列(暴力)

    665. 非递减数列 给你一个长度为 n 的整数数组,请你判断在 最多 改变 1 个元素的情况下,该数组能否变成一个非递减数列. 我们是这样定义一个非递减数列的: 对于数组中所有的 i (1 < ...

  4. Java实现 蓝桥杯 基础练习 查找整数

    基础练习 查找整数 时间限制:1.0s 内存限制:256.0MB 提交此题 锦囊1 锦囊2 问题描述 给出一个包含n个整数的数列,问整数a在数列中的第一次出现是第几个. 输入格式 第一行包含一个整数n ...

  5. Java实现 蓝桥杯VIP 算法训练 数列

    问题描述 给定一个正整数k(3≤k≤15),把所有k的方幂及所有有限个互不相等的k的方幂之和构成一个递增的序列,例如,当k=3时,这个序列是: 1,3,4,9,10,12,13,- (该序列实际上就是 ...

  6. Java实现 蓝桥杯 算法提高 奥运会开幕式

    试题 算法提高 奥运会开幕式 资源限制 时间限制:1.0s 内存限制:256.0MB 问题描述 学校给高一(三)班分配了一个名额,去参加奥运会的开幕式.每个人都争着要去,可是名额只有一个,怎么办?班长 ...

  7. Java实现第九届蓝桥杯第几天

    第几天 题目描述 2000年的1月1日,是那一年的第1天. 那么,2000年的5月4日,是那一年的第几天? 注意:需要提交的是一个整数,不要填写任何多余内容. import java.util.Cal ...

  8. Java实现第八届蓝桥杯字母组串

    字母组串 由 A,B,C 这3个字母就可以组成许多串. 比如:"A","AB","ABC","ABA","AA ...

  9. Linux 工作管理

    把进程放入后台 进程后加&,这时,进程在后台是运行的 tar -zcf etc.tar.gz /etc & 在执行程序时,快速按下ctrl+z快捷键,这时,进程在后台是停止的 查看后台 ...

  10. 【Jquery】判断宽度跳转

    $(window).resize(function(){ var wWidth = screen.width; if( wWidth < 788 ){ window.location.href= ...