注意事项

一、首先要保证安装了flume,flume相关安装文章可以看【Hadoop离线基础总结】日志采集框架Flume二、把flume的lib目录下自带的过时的scala-library-2.10.5.jar包替换成scala-library-2.11.8.jar

三、下载需要的jar包,下载地址献上:https://repo1.maven.org/maven2/org/apache/spark/spark-streaming-flume_2.11/2.2.0/spark-streaming-flume_2.11-2.2.0.jar

并把jar包也放到flume的lib目录下


SparkStreaming从flume中poll数据

步骤

一、开发flume配置文件

在安装了flume的虚拟机执行以下操作命令

mkdir -p /export/servers/flume/flume-poll		//受监控的文件夹

cd /export/servers/apache-flume-1.6.0-cdh5.14.0-bin/conf
vim flume-poll.conf
# 命名flume的各个组件
a1.sources = r1
a1.sinks = k1
a1.channels = c1 # 配置source组件
a1.sources.r1.channels = c1
a1.sources.r1.type = spooldir
a1.sources.r1.spoolDir = /export/servers/flume/flume-poll
a1.sources.r1.fileHeader = true # 配置channel组件 选用memory channel
a1.channels.c1.type =memory
a1.channels.c1.capacity = 20000
a1.channels.c1.transactionCapacity=5000 # 配置sink组件
a1.sinks.k1.channel = c1
a1.sinks.k1.type = org.apache.spark.streaming.flume.sink.SparkSink
a1.sinks.k1.hostname=node03
a1.sinks.k1.port = 8888
a1.sinks.k1.batchSize= 2000

二、启动flume

cd /export/servers/apache-flume-1.6.0-cdh5.14.0-bin/

bin/flume-ng agent -c conf -f conf/flume-poll.conf -n a1 -Dflume.root.logger=DEBUG,CONSOLE

三、开发sparkStreaming代码

1.创建maven工程,导入jar包
<properties>
<scala.version>2.11.8</scala.version>
<spark.version>2.2.0</spark.version>
</properties>
<dependencies>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming-flume_2.11</artifactId>
<version>2.2.0</version>
</dependency>
<dependency>
<groupId>org.scala-lang</groupId>
<artifactId>scala-library</artifactId>
<version>${scala.version}</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.11</artifactId>
<version>${spark.version}</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_2.11</artifactId>
<version>${spark.version}</version>
</dependency>
<!-- https://mvnrepository.com/artifact/org.apache.spark/spark-streaming -->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming_2.11</artifactId>
<version>2.2.0</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-client</artifactId>
<version>2.7.5</version>
</dependency> <dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-hive_2.11</artifactId>
<version>2.2.0</version>
</dependency> <dependency>
<groupId>mysql</groupId>
<artifactId>mysql-connector-java</artifactId>
<version>5.1.38</version>
</dependency> </dependencies>
<build>
<sourceDirectory>src/main/scala</sourceDirectory>
<testSourceDirectory>src/test/scala</testSourceDirectory>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<version>3.0</version>
<configuration>
<source>1.8</source>
<target>1.8</target>
<encoding>UTF-8</encoding>
<!-- <verbal>true</verbal>-->
</configuration>
</plugin>
<plugin>
<groupId>net.alchim31.maven</groupId>
<artifactId>scala-maven-plugin</artifactId>
<version>3.2.0</version>
<executions>
<execution>
<goals>
<goal>compile</goal>
<goal>testCompile</goal>
</goals>
<configuration>
<args>
<arg>-dependencyfile</arg>
<arg>${project.build.directory}/.scala_dependencies</arg>
</args>
</configuration>
</execution>
</executions>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-shade-plugin</artifactId>
<version>3.1.1</version>
<executions>
<execution>
<phase>package</phase>
<goals>
<goal>shade</goal>
</goals>
<configuration>
<filters>
<filter>
<artifact>*:*</artifact>
<excludes>
<exclude>META-INF/*.SF</exclude>
<exclude>META-INF/*.DSA</exclude>
<exclude>META-INF/*.RSA</exclude>
</excludes>
</filter>
</filters>
<transformers>
<transformer implementation="org.apache.maven.plugins.shade.resource.ManifestResourceTransformer">
<mainClass></mainClass>
</transformer>
</transformers>
</configuration>
</execution>
</executions>
</plugin>
</plugins>
</build>
2.开发代码
import org.apache.spark.streaming.dstream.{DStream, ReceiverInputDStream}
import org.apache.spark.streaming.flume.{FlumeUtils, SparkFlumeEvent}
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.{SparkConf, SparkContext} object SparkFlumePoll { // 定义updateFunc函数
def updateFunc(newValues: Seq[Int],runningCount: Option[Int]): Option[Int] = {
Option(newValues.sum + runningCount.getOrElse(0))
} def main(args: Array[String]): Unit = {
// 获取SparkConf
val sparkConf: SparkConf = new SparkConf().set("spark.driver.host", "localhost").setAppName("SparkFlume-Poll").setMaster("local[6]")
// 获取SparkContext
val sparkContext = new SparkContext(sparkConf)
// 设置日志级别
sparkContext.setLogLevel("WARN")
//获取StreamingContext
val streamingContext = new StreamingContext(sparkContext, Seconds(5))
streamingContext.checkpoint("./poll-Flume") // 通过FlumeUtils调用createPollingStream方法获取flume中的数据
/*
createPollingStream所需参数:
ssc: StreamingContext,
hostname: String,
port: Int,
*/
val stream: ReceiverInputDStream[SparkFlumeEvent] = FlumeUtils.createPollingStream(streamingContext, "node03", 8888)
// 拿到数据后,所有的数据都会封装在SparkFlumeEvent中 // 将SparkFlumeEvent封装的数据转换为DStream
val line: DStream[String] = stream.map(x => {
// x代表SparkFlumeEvent封装对象,里面封装了event数据,通过以下方法转换成数组
val array: Array[Byte] = x.event.getBody.array()
// 将拿到的数组转换为String
val str = new String(array)
str
}
) // 进行单词计数操作
val value: DStream[(String, Int)] = line.flatMap(_.split(" ")).map((_, 1)).updateStateByKey(updateFunc) //输出结果
value.print() streamingContext.start()
streamingContext.awaitTermination()
}
}

四、向监控目录中导入文本文件

控制台结果

-------------------------------------------
Time: 1586877095000 ms
------------------------------------------- -------------------------------------------
Time: 1586877100000 ms
------------------------------------------- 20/04/14 23:11:44 WARN RandomBlockReplicationPolicy: Expecting 1 replicas with only 0 peer/s.
20/04/14 23:11:44 WARN BlockManager: Block input-0-1586877094060 replicated to only 0 peer(s) instead of 1 peers
-------------------------------------------
Time: 1586877105000 ms
-------------------------------------------
(world,1)
(hive,2)
(hello,2)
(sqoop,1)
(test,1)
(abb,1) -------------------------------------------
Time: 1586877110000 ms
-------------------------------------------
(world,1)
(hive,2)
(hello,2)
(sqoop,1)
(test,1)
(abb,1) -------------------------------------------
Time: 1586877115000 ms
-------------------------------------------
(world,1)
(hive,2)
(hello,2)
(sqoop,1)
(test,1)
(abb,1) 20/04/14 23:11:57 WARN RandomBlockReplicationPolicy: Expecting 1 replicas with only 0 peer/s.
20/04/14 23:11:57 WARN BlockManager: Block input-0-1586877094061 replicated to only 0 peer(s) instead of 1 peers
-------------------------------------------
Time: 1586877120000 ms
-------------------------------------------
(world,2)
(hive,4)
(hello,4)
(sqoop,2)
(test,2)
(abb,2) -------------------------------------------
Time: 1586877125000 ms
-------------------------------------------
(world,2)
(hive,4)
(hello,4)
(sqoop,2)
(test,2)
(abb,2)

flume将数据push给SparkStreaming

步骤

一、开发flume配置文件

mkdir -p /export/servers/flume/flume-push/

cd /export/servers/apache-flume-1.6.0-cdh5.14.0-bin/conf
vim flume-push.conf
#push mode
a1.sources = r1
a1.sinks = k1
a1.channels = c1
#source
a1.sources.r1.channels = c1
a1.sources.r1.type = spooldir
a1.sources.r1.spoolDir = /export/servers/flume/flume-push
a1.sources.r1.fileHeader = true
#channel
a1.channels.c1.type =memory
a1.channels.c1.capacity = 20000
a1.channels.c1.transactionCapacity=5000
#sinks
a1.sinks.k1.channel = c1
a1.sinks.k1.type = avro
#注意这里的ip需要指定的是我们spark程序所运行的服务器的ip,也就是我们的localhost
a1.sinks.k1.hostname=192.168.0.105
a1.sinks.k1.port = 8888
a1.sinks.k1.batchSize= 2000

二、启动flume

cd /export/servers/apache-flume-1.6.0-cdh5.14.0-bin/

bin/flume-ng agent -c conf -f conf/flume-push.conf -n a1 -Dflume.root.logger=DEBUG,CONSOLE

三、开发代码

package cn.itcast.sparkstreaming.demo4

import org.apache.spark.streaming.dstream.{DStream, ReceiverInputDStream}
import org.apache.spark.streaming.flume.{FlumeUtils, SparkFlumeEvent}
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.{SparkConf, SparkContext} object SparkFlumePush {
def main(args: Array[String]): Unit = {
//获取SparkConf
val sparkConf: SparkConf = new SparkConf().setAppName("SparkFlume-Push").setMaster("local[6]").set("spark.driver.host", "localhost")
//获取SparkContext
val sparkContext = new SparkContext(sparkConf)
sparkContext.setLogLevel("WARN")
//获取StreamingContext
val streamingContext = new StreamingContext(sparkContext, Seconds(5)) val stream: ReceiverInputDStream[SparkFlumeEvent] = FlumeUtils.createStream(streamingContext, "192.168.0.105", 8888) val value: DStream[String] = stream.map(x => {
val array: Array[Byte] = x.event.getBody.array() val str = new String(array)
str
}) value.print() streamingContext.start()
streamingContext.awaitTermination()
} }

四、向监控目录中导入文本文件

控制台结果

-------------------------------------------
Time: 1586882385000 ms
------------------------------------------- 20/04/15 00:39:45 WARN RandomBlockReplicationPolicy: Expecting 1 replicas with only 0 peer/s.
20/04/15 00:39:45 WARN BlockManager: Block input-0-1586882384800 replicated to only 0 peer(s) instead of 1 peers
-------------------------------------------
Time: 1586882390000 ms
-------------------------------------------
hello world
sqoop hive
abb test
hello hive -------------------------------------------
Time: 1586882395000 ms
-------------------------------------------

【Spark】SparkStreaming与flume进行整合的更多相关文章

  1. 【Spark】SparkStreaming和Kafka的整合

    文章目录 Streaming和Kafka整合 概述 使用0.8版本下Receiver DStream接收数据进行消费 步骤 一.启动Kafka集群 二.创建maven工程,导入jar包 三.创建一个k ...

  2. Spark Streaming从Flume Poll数据案例实战和内幕源码解密

    本节课分成二部分讲解: 一.Spark Streaming on Polling from Flume实战 二.Spark Streaming on Polling from Flume源码 第一部分 ...

  3. 图解SparkStreaming与Kafka的整合,这些细节大家要注意!

    前言 老刘是一名即将找工作的研二学生,写博客一方面是复习总结大数据开发的知识点,一方面是希望帮助更多自学的小伙伴.由于老刘是自学大数据开发,肯定会存在一些不足,还希望大家能够批评指正,让我们一起进步! ...

  4. Spark Streaming处理Flume数据练习

    把Flume Source(netcat类型),从终端上不断给Flume Source发送消息,Flume把消息汇集到Sink(avro类型),由Sink把消息推送给Spark Streaming并处 ...

  5. cdh环境下,spark streaming与flume的集成问题总结

    文章发自:http://www.cnblogs.com/hark0623/p/4170156.html  转发请注明 如何做集成,其实特别简单,网上其实就是教程. http://blog.csdn.n ...

  6. spark streaming集成flume

    1. 安装flume flume安装,解压后修改flume_env.sh配置文件,指定java_home即可. cp hdfs jar包到flume lib目录下(否则无法抽取数据到hdfs上): $ ...

  7. Flume+Kafka整合

    脚本生产数据---->flume采集数据----->kafka消费数据------->storm集群处理数据 日志文件使用log4j生成,滚动生成! 当前正在写入的文件在满足一定的数 ...

  8. demo2 Kafka+Spark Streaming+Redis实时计算整合实践 foreachRDD输出到redis

    基于Spark通用计算平台,可以很好地扩展各种计算类型的应用,尤其是Spark提供了内建的计算库支持,像Spark Streaming.Spark SQL.MLlib.GraphX,这些内建库都提供了 ...

  9. hadoop 之 kafka 安装与 flume -> kafka 整合

    62-kafka 安装 : flume 整合 kafka 一.kafka 安装 1.下载 http://kafka.apache.org/downloads.html 2. 解压 tar -zxvf ...

随机推荐

  1. D - A Game with Traps-- codeforces 1260D A

    题目大意: 一共有m个士兵,k个陷阱,时间为t,一个首领,这个首领需要在t时间内尽可能多的将士兵带到boos的面前, 第二行是每个士兵的灵敏度. 紧接着是k个陷阱,每个陷阱有l,,r,,d组成,l代表 ...

  2. python调用小豆机器人实现自己的机器人!

    大家好,人工智能是不是很酷呢? 今天我们用python调用小豆机器人实现自己的机器人(可以结合往期的语音识别更酷哦) 好,废话不多说直接上代码 import requests i=input(&quo ...

  3. Springboot:员工管理之添加员工(十(7))

    构建员工添加请求 com\springboot\controller\EmployeeController.java /*调转到员工添加页 携带部门信息 restful风格*/ @GetMapping ...

  4. 负载均衡服务之HAProxy基础配置(二)

    前文我们聊了下haproxy的global配置段中的常用参数的说明以及使用,回顾请参考https://www.cnblogs.com/qiuhom-1874/p/12763245.html:今天我们来 ...

  5. C# 序列化之二进制

    序列化:又称串行化,是.NET运行时环境用来支持用户定义类型的流化的机制.其目的是以某种存储形成使自定义对象持久化,或者将这种对象从一个地方传输到另一个地方. 一般有三种方式:1.是使用BinaryF ...

  6. TensorFlow keras读取图片

    from tensorflow.python.keras.preprocessing.image import load_img,img_to_array def main(): #tagert_si ...

  7. C#线程学习笔记

    本笔记摘抄自:https://www.cnblogs.com/zhili/archive/2012/07/18/Thread.html,记录一下学习,方便后面资料查找 一.线程的介绍 进程(Proce ...

  8. 使用Idea当中的快捷键快速查看继承关系或其图表的两种方法

    一.Idea当中有两种方法可以查看继承关系 在Idea当中选中一个类,然后按Ctrl+H,可以快速查看当前所选类的继承关系,如下图: ​ 同样选中一个类,按CTRL+ALT+U,即可生成当前类的继承关 ...

  9. 第 3 篇:实现博客首页文章列表 API

    作者:HelloGitHub-追梦人物 文中所涉及的示例代码,已同步更新到 HelloGitHub-Team 仓库 此前在讨论基于模板引擎的开发方式和 django-rest-framework 开发 ...

  10. 安装并使用pyecharts库

    在cmd命令行中输入安装命令, pyecharts库的安装命令如下: pip install -i https://pypi.tuna.tsinghua.edu.cn/simple pyecharts ...