【Spark】SparkStreaming与flume进行整合
文章目录
注意事项
一、首先要保证安装了flume,flume相关安装文章可以看【Hadoop离线基础总结】日志采集框架Flume二、把flume的lib目录下自带的过时的scala-library-2.10.5.jar包替换成scala-library-2.11.8.jar
三、下载需要的jar包,下载地址献上:https://repo1.maven.org/maven2/org/apache/spark/spark-streaming-flume_2.11/2.2.0/spark-streaming-flume_2.11-2.2.0.jar
并把jar包也放到flume的lib目录下
SparkStreaming从flume中poll数据
步骤
一、开发flume配置文件
在安装了flume的虚拟机执行以下操作命令
mkdir -p /export/servers/flume/flume-poll //受监控的文件夹
cd /export/servers/apache-flume-1.6.0-cdh5.14.0-bin/conf
vim flume-poll.conf
# 命名flume的各个组件
a1.sources = r1
a1.sinks = k1
a1.channels = c1
# 配置source组件
a1.sources.r1.channels = c1
a1.sources.r1.type = spooldir
a1.sources.r1.spoolDir = /export/servers/flume/flume-poll
a1.sources.r1.fileHeader = true
# 配置channel组件 选用memory channel
a1.channels.c1.type =memory
a1.channels.c1.capacity = 20000
a1.channels.c1.transactionCapacity=5000
# 配置sink组件
a1.sinks.k1.channel = c1
a1.sinks.k1.type = org.apache.spark.streaming.flume.sink.SparkSink
a1.sinks.k1.hostname=node03
a1.sinks.k1.port = 8888
a1.sinks.k1.batchSize= 2000
二、启动flume
cd /export/servers/apache-flume-1.6.0-cdh5.14.0-bin/
bin/flume-ng agent -c conf -f conf/flume-poll.conf -n a1 -Dflume.root.logger=DEBUG,CONSOLE
三、开发sparkStreaming代码
1.创建maven工程,导入jar包
<properties>
<scala.version>2.11.8</scala.version>
<spark.version>2.2.0</spark.version>
</properties>
<dependencies>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming-flume_2.11</artifactId>
<version>2.2.0</version>
</dependency>
<dependency>
<groupId>org.scala-lang</groupId>
<artifactId>scala-library</artifactId>
<version>${scala.version}</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.11</artifactId>
<version>${spark.version}</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_2.11</artifactId>
<version>${spark.version}</version>
</dependency>
<!-- https://mvnrepository.com/artifact/org.apache.spark/spark-streaming -->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming_2.11</artifactId>
<version>2.2.0</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-client</artifactId>
<version>2.7.5</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-hive_2.11</artifactId>
<version>2.2.0</version>
</dependency>
<dependency>
<groupId>mysql</groupId>
<artifactId>mysql-connector-java</artifactId>
<version>5.1.38</version>
</dependency>
</dependencies>
<build>
<sourceDirectory>src/main/scala</sourceDirectory>
<testSourceDirectory>src/test/scala</testSourceDirectory>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<version>3.0</version>
<configuration>
<source>1.8</source>
<target>1.8</target>
<encoding>UTF-8</encoding>
<!-- <verbal>true</verbal>-->
</configuration>
</plugin>
<plugin>
<groupId>net.alchim31.maven</groupId>
<artifactId>scala-maven-plugin</artifactId>
<version>3.2.0</version>
<executions>
<execution>
<goals>
<goal>compile</goal>
<goal>testCompile</goal>
</goals>
<configuration>
<args>
<arg>-dependencyfile</arg>
<arg>${project.build.directory}/.scala_dependencies</arg>
</args>
</configuration>
</execution>
</executions>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-shade-plugin</artifactId>
<version>3.1.1</version>
<executions>
<execution>
<phase>package</phase>
<goals>
<goal>shade</goal>
</goals>
<configuration>
<filters>
<filter>
<artifact>*:*</artifact>
<excludes>
<exclude>META-INF/*.SF</exclude>
<exclude>META-INF/*.DSA</exclude>
<exclude>META-INF/*.RSA</exclude>
</excludes>
</filter>
</filters>
<transformers>
<transformer implementation="org.apache.maven.plugins.shade.resource.ManifestResourceTransformer">
<mainClass></mainClass>
</transformer>
</transformers>
</configuration>
</execution>
</executions>
</plugin>
</plugins>
</build>
2.开发代码
import org.apache.spark.streaming.dstream.{DStream, ReceiverInputDStream}
import org.apache.spark.streaming.flume.{FlumeUtils, SparkFlumeEvent}
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.{SparkConf, SparkContext}
object SparkFlumePoll {
// 定义updateFunc函数
def updateFunc(newValues: Seq[Int],runningCount: Option[Int]): Option[Int] = {
Option(newValues.sum + runningCount.getOrElse(0))
}
def main(args: Array[String]): Unit = {
// 获取SparkConf
val sparkConf: SparkConf = new SparkConf().set("spark.driver.host", "localhost").setAppName("SparkFlume-Poll").setMaster("local[6]")
// 获取SparkContext
val sparkContext = new SparkContext(sparkConf)
// 设置日志级别
sparkContext.setLogLevel("WARN")
//获取StreamingContext
val streamingContext = new StreamingContext(sparkContext, Seconds(5))
streamingContext.checkpoint("./poll-Flume")
// 通过FlumeUtils调用createPollingStream方法获取flume中的数据
/*
createPollingStream所需参数:
ssc: StreamingContext,
hostname: String,
port: Int,
*/
val stream: ReceiverInputDStream[SparkFlumeEvent] = FlumeUtils.createPollingStream(streamingContext, "node03", 8888)
// 拿到数据后,所有的数据都会封装在SparkFlumeEvent中
// 将SparkFlumeEvent封装的数据转换为DStream
val line: DStream[String] = stream.map(x => {
// x代表SparkFlumeEvent封装对象,里面封装了event数据,通过以下方法转换成数组
val array: Array[Byte] = x.event.getBody.array()
// 将拿到的数组转换为String
val str = new String(array)
str
}
)
// 进行单词计数操作
val value: DStream[(String, Int)] = line.flatMap(_.split(" ")).map((_, 1)).updateStateByKey(updateFunc)
//输出结果
value.print()
streamingContext.start()
streamingContext.awaitTermination()
}
}
四、向监控目录中导入文本文件

控制台结果
-------------------------------------------
Time: 1586877095000 ms
-------------------------------------------
-------------------------------------------
Time: 1586877100000 ms
-------------------------------------------
20/04/14 23:11:44 WARN RandomBlockReplicationPolicy: Expecting 1 replicas with only 0 peer/s.
20/04/14 23:11:44 WARN BlockManager: Block input-0-1586877094060 replicated to only 0 peer(s) instead of 1 peers
-------------------------------------------
Time: 1586877105000 ms
-------------------------------------------
(world,1)
(hive,2)
(hello,2)
(sqoop,1)
(test,1)
(abb,1)
-------------------------------------------
Time: 1586877110000 ms
-------------------------------------------
(world,1)
(hive,2)
(hello,2)
(sqoop,1)
(test,1)
(abb,1)
-------------------------------------------
Time: 1586877115000 ms
-------------------------------------------
(world,1)
(hive,2)
(hello,2)
(sqoop,1)
(test,1)
(abb,1)
20/04/14 23:11:57 WARN RandomBlockReplicationPolicy: Expecting 1 replicas with only 0 peer/s.
20/04/14 23:11:57 WARN BlockManager: Block input-0-1586877094061 replicated to only 0 peer(s) instead of 1 peers
-------------------------------------------
Time: 1586877120000 ms
-------------------------------------------
(world,2)
(hive,4)
(hello,4)
(sqoop,2)
(test,2)
(abb,2)
-------------------------------------------
Time: 1586877125000 ms
-------------------------------------------
(world,2)
(hive,4)
(hello,4)
(sqoop,2)
(test,2)
(abb,2)
flume将数据push给SparkStreaming
步骤
一、开发flume配置文件
mkdir -p /export/servers/flume/flume-push/
cd /export/servers/apache-flume-1.6.0-cdh5.14.0-bin/conf
vim flume-push.conf
#push mode
a1.sources = r1
a1.sinks = k1
a1.channels = c1
#source
a1.sources.r1.channels = c1
a1.sources.r1.type = spooldir
a1.sources.r1.spoolDir = /export/servers/flume/flume-push
a1.sources.r1.fileHeader = true
#channel
a1.channels.c1.type =memory
a1.channels.c1.capacity = 20000
a1.channels.c1.transactionCapacity=5000
#sinks
a1.sinks.k1.channel = c1
a1.sinks.k1.type = avro
#注意这里的ip需要指定的是我们spark程序所运行的服务器的ip,也就是我们的localhost
a1.sinks.k1.hostname=192.168.0.105
a1.sinks.k1.port = 8888
a1.sinks.k1.batchSize= 2000
二、启动flume
cd /export/servers/apache-flume-1.6.0-cdh5.14.0-bin/
bin/flume-ng agent -c conf -f conf/flume-push.conf -n a1 -Dflume.root.logger=DEBUG,CONSOLE
三、开发代码
package cn.itcast.sparkstreaming.demo4
import org.apache.spark.streaming.dstream.{DStream, ReceiverInputDStream}
import org.apache.spark.streaming.flume.{FlumeUtils, SparkFlumeEvent}
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.{SparkConf, SparkContext}
object SparkFlumePush {
def main(args: Array[String]): Unit = {
//获取SparkConf
val sparkConf: SparkConf = new SparkConf().setAppName("SparkFlume-Push").setMaster("local[6]").set("spark.driver.host", "localhost")
//获取SparkContext
val sparkContext = new SparkContext(sparkConf)
sparkContext.setLogLevel("WARN")
//获取StreamingContext
val streamingContext = new StreamingContext(sparkContext, Seconds(5))
val stream: ReceiverInputDStream[SparkFlumeEvent] = FlumeUtils.createStream(streamingContext, "192.168.0.105", 8888)
val value: DStream[String] = stream.map(x => {
val array: Array[Byte] = x.event.getBody.array()
val str = new String(array)
str
})
value.print()
streamingContext.start()
streamingContext.awaitTermination()
}
}
四、向监控目录中导入文本文件

控制台结果
-------------------------------------------
Time: 1586882385000 ms
-------------------------------------------
20/04/15 00:39:45 WARN RandomBlockReplicationPolicy: Expecting 1 replicas with only 0 peer/s.
20/04/15 00:39:45 WARN BlockManager: Block input-0-1586882384800 replicated to only 0 peer(s) instead of 1 peers
-------------------------------------------
Time: 1586882390000 ms
-------------------------------------------
hello world
sqoop hive
abb test
hello hive
-------------------------------------------
Time: 1586882395000 ms
-------------------------------------------
【Spark】SparkStreaming与flume进行整合的更多相关文章
- 【Spark】SparkStreaming和Kafka的整合
文章目录 Streaming和Kafka整合 概述 使用0.8版本下Receiver DStream接收数据进行消费 步骤 一.启动Kafka集群 二.创建maven工程,导入jar包 三.创建一个k ...
- Spark Streaming从Flume Poll数据案例实战和内幕源码解密
本节课分成二部分讲解: 一.Spark Streaming on Polling from Flume实战 二.Spark Streaming on Polling from Flume源码 第一部分 ...
- 图解SparkStreaming与Kafka的整合,这些细节大家要注意!
前言 老刘是一名即将找工作的研二学生,写博客一方面是复习总结大数据开发的知识点,一方面是希望帮助更多自学的小伙伴.由于老刘是自学大数据开发,肯定会存在一些不足,还希望大家能够批评指正,让我们一起进步! ...
- Spark Streaming处理Flume数据练习
把Flume Source(netcat类型),从终端上不断给Flume Source发送消息,Flume把消息汇集到Sink(avro类型),由Sink把消息推送给Spark Streaming并处 ...
- cdh环境下,spark streaming与flume的集成问题总结
文章发自:http://www.cnblogs.com/hark0623/p/4170156.html 转发请注明 如何做集成,其实特别简单,网上其实就是教程. http://blog.csdn.n ...
- spark streaming集成flume
1. 安装flume flume安装,解压后修改flume_env.sh配置文件,指定java_home即可. cp hdfs jar包到flume lib目录下(否则无法抽取数据到hdfs上): $ ...
- Flume+Kafka整合
脚本生产数据---->flume采集数据----->kafka消费数据------->storm集群处理数据 日志文件使用log4j生成,滚动生成! 当前正在写入的文件在满足一定的数 ...
- demo2 Kafka+Spark Streaming+Redis实时计算整合实践 foreachRDD输出到redis
基于Spark通用计算平台,可以很好地扩展各种计算类型的应用,尤其是Spark提供了内建的计算库支持,像Spark Streaming.Spark SQL.MLlib.GraphX,这些内建库都提供了 ...
- hadoop 之 kafka 安装与 flume -> kafka 整合
62-kafka 安装 : flume 整合 kafka 一.kafka 安装 1.下载 http://kafka.apache.org/downloads.html 2. 解压 tar -zxvf ...
随机推荐
- 资料整理:python自动化测试——操作测试对象
文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理. 作者:爱吃米饭的猪 PS:如有需要Python学习资料的小伙伴可以加点击下方链接自 ...
- Eclipse Hadoop源码阅读环境
一.解压hadoop src包到workspace目录.为加快下载jar包的速度,在eclipse的maven设置里将配置文件的路径设置正确,然后配置maven的settings.xml: <m ...
- tensorflow基础--LeNet-5测试模型遇到TypeError: Failed to convert object of type <class 'list'> to Tensor
最近在看<TensorFlow 实战Google深度学习框架第二版>这本书,测试LeNet-5这个模型时遇到了TypeError: Failed to convert object of ...
- Matlab学习-(2)
1. 文件读取 在编写一个matlab项目时候,通常要导入很多不同格式的数据,下面我们来学习不同的导入函数.(1) 保存工作区MATLAB支持工作区的保存.用户可以将工作区或工作区中的变量以文件的形式 ...
- Golang Web入门(3):如何优雅的设计中间件
摘要 在上一篇文章中,我们已经可以实现一个性能较高,且支持RESTful风格的路由了.但是,在Web应用的开发中,我们还需要一些可以被扩展的功能. 因此,在设计框架的过程中,应该留出可以扩展的空间,比 ...
- 终于明白if __name__ == '__main__':了
其实很简单 if __name__ == '__main__': 就是一个判断 __name__是系统变量 __name__有一个特性,在当前文件运行是__main__,调用文件就是调用文件的路径了 ...
- [PHP][thinkphp5] 学习三:函数助手实例说明
来源:http://blog.csdn.net/lunsunhuan1825/article/details/71086487 load_trait:快速导入Traits,PHP5.5以上无需调用 / ...
- 【5min+】为你的.NET应用进行一次全方位体检
系列介绍 [五分钟的dotnet]是一个利用您的碎片化时间来学习和丰富.net知识的博文系列.它所包含了.net体系中可能会涉及到的方方面面,比如C#的小细节,AspnetCore,微服务中的.net ...
- 关于go的init函数
亲测,如果加载一个包,如果一个包里的每个文件,均含有init函数,那么均会执行. 目前来看,init的执行顺序,是文件名称的自然排序进行执行的. 并且只是所加载包里的go文件的init函数执行,对于包 ...
- 批量查询PDF文本并导出结果的小工具
效果: 批量查询指定关键字 & 指定目录下PDF文件中的文本,并导出文件路径和关键字所在文本行. 下载: 链接: https://pan.baidu.com/s/1sK2OMMgGX26l7P ...