时序分析:ARIMA模型(非平稳时间序列)
ARIMA模型意为求和自回归滑动平均模型(IntergratedAut少regressive MovingAverageModel),简记为ARIMA(p,d,q),p,q分别为自回归和滑动平均部分的阶次,d为差分运算阶次,对于某些非平稳时间序列{ y(t) },其一般形式为
若将(1-B)^d *y(t) 记为 z(t),则上式即是ARMA模型。
可通过差分方法求出增量序列:Deta y(t) = y(t) - y(t-1) (t=1,2,…,N)· 经过一次差分后,如果此增量序列{ Deta y(t) }是平稳的,那么对{ Deta y(t) }建立模型,表示为:
以上对非平稳时间序列{ Deta y(t) } 作一次差分称为一阶差分· 将这种思路推广, 当采用一阶差分还不能使 { Deta y(t) } 成为平稳时间序列时 , 还可采用高阶(d阶) 差分 ,以使 { Deta^d *y(t) }成为平稳时间序列, 再对{ Deta^d *y(t) }建立ARMA模型 ,然后根据差分算子v与后移算子B的关系(v=1一B),得到非平稳时间序列{ y(t) }的ARIMA模型,这就是ARIMA模型法的基本思路.
虽然足够多次的差分运算可以充分地提取原序列中的非平稳确定性信息,但过度的差分也会造成有用信息的浪费一般而言,若某时间序列具有线性的趋势,则可以对其进行一次差分而将线性趋势剔除掉;若某时间序列具有指数的趋势,则可以取对数将指数趋势化为线性趋势,然后再进行差分以消除线性趋势,接着对差分后的序列拟合ARMA模型进行分析与预测,最后再通过差分的反运算得到{y(t) }预测值.
时序分析:ARIMA模型(非平稳时间序列)的更多相关文章
- 时间序列算法(平稳时间序列模型,AR(p),MA(q),ARMA(p,q)模型和非平稳时间序列模型,ARIMA(p,d,q)模型)的模型以及需要的概念基础学习笔记梳理
在做很多与时间序列有关的预测时,比如股票预测,餐厅菜品销量预测时常常会用到时间序列算法,之前在学习这方面的知识时发现这方面的知识讲解不多,所以自己对时间序列算法中的常用概念和模型进行梳理总结(但是为了 ...
- 用R做时间序列分析之ARIMA模型预测
昨天刚刚把导入数据弄好,今天迫不及待试试怎么做预测,网上找的帖子跟着弄的. 第一步.对原始数据进行分析 一.ARIMA预测时间序列 指数平滑法对于预测来说是非常有帮助的,而且它对时间序列上面连续的值之 ...
- ARIMA模型——本质上是error和t-?时刻数据差分的线性模型!!!如果数据序列是非平稳的,并存在一定的增长或下降趋势,则需要对数据进行差分处理!ARIMA(p,d,q)称为差分自回归移动平均模型,AR是自回归, p为自回归项; MA为移动平均,q为移动平均项数,d为时间序列成为平稳时所做的差分次数
https://www.cnblogs.com/bradleon/p/6827109.html 文章里写得非常好,需详细看.尤其是arima的举例! 可以看到:ARIMA本质上是error和t-?时刻 ...
- 时间序列预测之--ARIMA模型
什么是 ARIMA模型 ARIMA模型的全称叫做自回归移动平均模型,全称是(ARIMA, Autoregressive Integrated Moving Average Model).也记作ARIM ...
- 时间序列分析模型——ARIMA模型
时间序列分析模型——ARIMA模型 一.研究目的 传统的经济计量方法是以经济理论为基础来描述变量关系的模型.但经济理论通常不足以对变量之间的动态联系提供一个严密的说明,而且内生变量既可以出现在方程的左 ...
- 基于R语言的ARIMA模型
A IMA模型是一种著名的时间序列预测方法,主要是指将非平稳时间序列转化为平稳时间序列,然后将因变量仅对它的滞后值以及随机误差项的现值和滞后值进行回归所建立的模型.ARIMA模型根据原序列是否平稳以及 ...
- ARIMA模型总结
时间序列建模基本步骤 获取被观测系统时间序列数据: 对数据绘图,观测是否为平稳时间序列:对于非平稳时间序列要先进行d阶差分运算,化为平稳时间序列: 经过第二步处理,已经得到平稳时间序列.要对平稳时间序 ...
- 时间序列模式——ARIMA模型
ARIMA模型全称为自回归积分滑动平均模型(Autoregressive Integrated Moving Average Model,简记ARIMA),是由博克思(Box)和詹金斯(Jenkins ...
- ARIMA模型--粒子群优化算法(PSO)和遗传算法(GA)
ARIMA模型(完整的Word文件可以去我的博客里面下载) ARIMA模型(英语:AutoregressiveIntegratedMovingAverage model),差分整合移动平均自回归模型, ...
随机推荐
- jquery源码分析(三)——工具函数
jQuery.extend({ expando: "jQuery" + ( version + Math.random() ).replace( /\D/g, "&quo ...
- 微信小程序如何引用iconfont图标
最近在研究微信小程序,自己写demo的时候想要引用巴里巴巴图标库的图标,于是: @font-face { font-family: 'iconfont'; src: url('iconfont.eot ...
- 清北学堂模拟赛d7t5 做实验
题目描述有一天,你实验室的老板给你布置的这样一个实验.首先他拿出了两个长度为 n 的数列 a 和 b,其中每个 ai 以二进制表示一个集合.例如数字 5 = (101)2 表示集合 f1; 3g.第 ...
- [bzoj1592][Usaco09Feb]Making the Grade 路面修整_动态规划
Making the Grade 路面修整 bzoj-1592 题目大意:给你n段路,每段路有一个高度h[i],将h[i]修改成h[i]$\pm\delta$的代价为$\delta$,求将这n段路修成 ...
- Java多线程之如何确定线程数
关于多线程的线程数的确定,最近研读过几篇paper,在此做一下笔记,方便使用时翻看. 1.<Java 虚拟机并发编程>中介绍 就是说:线程数 = CPU的核心数 * (1 - 阻塞系数) ...
- sublime3设置快捷键在浏览器打开预览
我下的st3默认不能使用快捷键在浏览器打开,所以要找到源文件然后选择在浏览器打开,非常麻烦.找了很久,终于找到了一个在浏览器打开的快捷方式. 亲测有效. 1.确保你的st3已经安装了package c ...
- 申请Letencrypt的免费证书文件-nginx
1.前言 Let's Encrypt是国外一个公共的免费SSL项目,由 Linux 基金会托管,它的来头不小,由Mozilla.思科.Akamai.IdenTrust和EFF等组织发起,目的就是向网站 ...
- [Cypress] Test XHR Failure Conditions with Cypress
Testing your application’s behavior when an XHR call results in an error can be difficult. The use o ...
- 用MJExtension简化MVC
首先引入MJExtension框架 模型 #import <Foundation/Foundation.h> @interface FundsModel : NSObject /** * ...
- WPF学习笔记——在“System.Windows.StaticResourceExtension”上提供值时引发了异常
在"System.Windows.StaticResourceExtension"上提供值时引发了异常 因应需要,写了一个转换器,然后窗体上引用,结果就出来这个错.编译的时候没事, ...