(hdu step 7.1.6)最大三角形(凸包的应用——在n个点中找到3个点,它们所形成的三角形面积最大)
题目:
最大三角形 |
| Time Limit: 5000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) |
| Total Submission(s): 121 Accepted Submission(s): 61 |
|
Problem Description
老师在计算几何这门课上给Eddy布置了一道题目。题目是这种:给定二维的平面上n个不同的点,要求在这些点里寻找三个点。使他们构成的三角形拥有的面积最大。
Eddy对这道题目百思不得其解,想不通用什么方法来解决,因此他找到了聪明的你,请你帮他解决这个题目。 |
|
Input
输入数据包括多组測试用例。每一个測试用例的第一行包括一个整数n。表示一共同拥有n个互不同样的点,接下来的n行每行包括2个整数xi,yi。表示平面上第i个点的x与y坐标。
你能够觉得:3 <= n <= 50000 并且 -10000 <= xi, yi <= 10000. |
|
Output
对于每一组測试数据,请输出构成的最大的三角形的面积。结果保留两位小数。
每组输出占一行。 |
|
Sample Input
3 |
|
Sample Output
1.50 |
|
Author
Eddy
|
|
Recommend
lcy
|
题目分析:
凸包的简单应用,在n个点中找到3个点,它们所形成的三角形面积最大。
这道题一般来说有两种思路:
1)直接暴力。这肯定会TLE,由于n的数据范围都在50000左右了。
2)先求凸包。
然后再在凸包上去找这三个点。这种话,数据规模就要小非常多了。事实证明,能形成最大三角形的
这三个点也一定在凸包上。
代码例如以下:
#include <iostream>
#include <cstdio>
#include <cmath>
#include <algorithm> using namespace std; /**
* 求n个点中随意三个点所形成的三角形的最大面积。
* 1)直接暴力。 肯定会TLE。 由于n都是50000多了。 *
* 2)所形成的最大三角形的三个点肯定在凸包上。 在凸包上找这三个点
* 将问题转化成:
* 在凸包上求三个点所形成的三角形的面积最大..
*/ const double epsi = 1e-8;
const double pi = acos(-1.0);
const int maxn = 50001; struct PPoint{//结构体尽量不要定义成Point这种,easy和C/C++本身中的变量同名
double x;
double y; PPoint(double _x = 0,double _y = 0):x(_x),y(_y){ } PPoint operator - (const PPoint& op2) const{
return PPoint(x - op2.x,y - op2.y);
} double operator^(const PPoint &op2)const{
return x*op2.y - y*op2.x;
}
}; inline int sign(const double &x){
if(x > epsi){
return 1;
} if(x < -epsi){
return -1;
} return 0;
} inline double sqr(const double &x){
return x*x;
} inline double mul(const PPoint& p0,const PPoint& p1,const PPoint& p2){
return (p1 - p0)^(p2 - p0);
} inline double dis2(const PPoint &p0,const PPoint &p1){
return sqr(p0.x - p1.x) + sqr(p0.y - p1.y);
} inline double dis(const PPoint& p0,const PPoint& p1){
return sqrt(dis2(p0,p1));
} int n;
PPoint p[maxn];
PPoint convex_hull_p0; inline bool convex_hull_cmp(const PPoint& a,const PPoint& b){
return sign(mul(convex_hull_p0,a,b)>0)|| (sign(mul(convex_hull_p0,a,b)) == 0 && dis2(convex_hull_p0,a) < dis2(convex_hull_p0,b));
} int convex_hull(PPoint* a,int n,PPoint* b){
int i;
for(i = 1 ; i < n ; ++i){
if(sign(a[i].x - a[0].x) < 0 || (sign(a[i].x - a[0].x) == 0 && sign(a[i].y - a[0].y) < 0)){
swap(a[i],a[0]);
}
} convex_hull_p0 = a[0];//这两行代码不要顺序调换了..否则会WA
sort(a,a+n,convex_hull_cmp); b[0] = a[0];
b[1] = a[1];
int newn = 2;
for(i = 2 ; i < n ; ++i){
while(newn > 1 && sign(mul(b[newn-1],b[newn-2],a[i])) >= 0){
newn--;
} b[newn++] = a[i];
} return newn;
} /**
* 有一个三角形的三个点来计算这个三角形的面积
*/
double crossProd(PPoint A, PPoint B, PPoint C) {
return (B.x-A.x)*(C.y-A.y) - (B.y-A.y)*(C.x-A.x);
} int main(){
while(scanf("%d",&n)!=EOF){
int i;
for(i = 0 ; i < n ; ++i){
scanf("%lf %lf",&p[i].x,&p[i].y);
} n = convex_hull(p,n,p);
p[n] = p[0]; double max_ans = -1; int j;
int k;
for(i = 0 ; i < n ; ++i){
for(j = i+1 ; j < n ; ++j){
for(k = j+1 ; k <= n ; ++k){
double ans = fabs(crossProd(p[i],p[j],p[k]))/2; if(max_ans < ans){
max_ans = ans;
}
}
}
} printf("%.2lf\n",max_ans);
} return 0;
}
(hdu step 7.1.6)最大三角形(凸包的应用——在n个点中找到3个点,它们所形成的三角形面积最大)的更多相关文章
- (hdu step 7.1.5)Maple trees(凸包的最小半径寻找掩护轮)
称号: Maple trees Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Tot ...
- (hdu step 7.1.7)Wall(求凸包的周长——求将全部点围起来的最小凸多边形的周长)
题目: Wall Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Subm ...
- hdu 2202 最大三角形 (凸包)
最大三角形 Time Limit: 5000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submi ...
- hdu 最大三角形(凸包+旋转卡壳)
老师在计算几何这门课上给Eddy布置了一道题目,题目是这样的:给定二维的平面上n个不同的点,要求在这些点里寻找三个点,使他们构成的三角形拥有的面积最大.Eddy对这道题目百思不得其解,想不通用什么方法 ...
- HDU 4946 Area of Mushroom(构造凸包)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4946 题目大意:在一个平面上有n个点p1,p2,p3,p4....pn,每个点可以以v的速度在平面上移 ...
- HDU 1392 Surround the Trees(几何 凸包模板)
http://acm.hdu.edu.cn/showproblem.php?pid=1392 题目大意: 二维平面给定n个点,用一条最短的绳子将所有的点都围在里面,求绳子的长度. 解题思路: 凸包的模 ...
- HDU 3685 Rotational Painting(多边形质心+凸包)(2010 Asia Hangzhou Regional Contest)
Problem Description Josh Lyman is a gifted painter. One of his great works is a glass painting. He c ...
- (hdu step 7.1.3)Lifting the Stone(求凸多边形的重心)
题目: Lifting the Stone Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Other ...
- hdu 1348:Wall(计算几何,求凸包周长)
Wall Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submis ...
随机推荐
- Flask + mod_wsgi + Apache on Windows 部署成功(随时接受提问)
前言 说是前言,纯粹就是吐槽. 假设你赶时间.全然能够跳过这部分,我保证不会在这里隐藏不论什么实用的内容. 人上年纪后.可能冲劲不足,我花了大概两周的时间才成功的将flask部署到windows上.还 ...
- 一个简单的推断抢购时间是否到达的js函数
原型函数,功能非常easy,找到时钟的id,计算数值.到达抢购时间时运行任务. function nwt() {var str=$('#deal_expiry_timer_e3cdcd2a').tex ...
- CSDN--十年
昨天获得了博客专家的勋章,惊喜总是来的有点意外.这个勋章也算是来的一波三折.借着这个机会,回首一下我在CSDN的博客历史. 这个博客如今可查的最早的文章,是04年下半年写的,事实上之前应该另一些自己写 ...
- robot framework框架selenium API
RIDE面板认识 selenium API 关键字 语法 参数 备注 Open Browser url Chrome 用不同的浏览器打开url,需要下载不同的浏览器驱动,默认火狐 Close Brow ...
- 【翻译自mos文章】 11gR1版本号 asmcmd的新命令--cp、md_backup、md_restore
11gR1版本号 asmcmd的新命令--cp.md_backup.md_restore 參考原文: ASMCMD - New commands in 11gR1 (Doc ID 451900.1) ...
- DNS反射放大攻击分析——DNS反射放大攻击主要是利用DNS回复包比请求包大的特点,放大流量,伪造请求包的源IP地址为受害者IP,将应答包的流量引入受害的服务器
DNS反射放大攻击分析 摘自:http://www.shaojike.com/2016/08/19/DNS%E6%94%BE%E5%A4%A7%E6%94%BB%E5%87%BB%E7%AE%80%E ...
- JDBC整理
JDBC提供了独立于数据库的统一Api,用以执行SQL命令.JDBC API由以下常用的接口和类组成: DriverManagement:用于管理JDBC驱动的服务类,程序中使用该类的主要功能是获取C ...
- java实现sql批量插入参数
背景: 需要更新一些不规范的时间格式,如将某个时间格式化为yy-MM-dd,实际上为 yy-MM-dd hh:mm:ss,并且需要提供回滚脚本. 例如:规范化时间的脚本如下: ,) WHERE tes ...
- JQuery 登录窗口的布局
<!-- Button trigger modal --><button type="button" class="btn btn-primary bt ...
- 洛谷P3357 最长k可重线段集问题(费用流)
题目描述 给定平面 x-O-yx−O−y 上 nn 个开线段组成的集合 II ,和一个正整数 kk .试设计一个算法,从开线段集合 II 中选取出开线段集合 S\subseteq IS⊆I ,使得在 ...