BFOIndividual.py

 import numpy as np
import ObjFunction class BFOIndividual: '''
individual of baterial clony foraging algorithm
''' def __init__(self, vardim, bound):
'''
vardim: dimension of variables
bound: boundaries of variables
'''
self.vardim = vardim
self.bound = bound
self.fitness = 0.
self.trials = 0 def generate(self):
'''
generate a random chromsome for baterial clony foraging algorithm
'''
len = self.vardim
rnd = np.random.random(size=len)
self.chrom = np.zeros(len)
for i in xrange(0, len):
self.chrom[i] = self.bound[0, i] + \
(self.bound[1, i] - self.bound[0, i]) * rnd[i] def calculateFitness(self):
'''
calculate the fitness of the chromsome
'''
# self.fitness = ObjFunction.GrieFunc(
# self.vardim, self.chrom, self.bound)
s1 = 0.
s2 = 1.
for i in range(1, self.vardim + 1):
s1 = s1 + self.chrom[i - 1] ** 2
s2 = s2 * np.cos(self.chrom[i - 1] / np.sqrt(i))
y = (1. / 4000.) * s1 - s2 + 1
self.fitness = y

BFO.py

 import numpy as np
from BFOIndividual import BFOIndividual
import random
import copy
import matplotlib.pyplot as plt
import math class BacterialForagingOptimization: '''
The class for baterial foraging optimization algorithm
''' def __init__(self, sizepop, vardim, bound, params):
'''
sizepop: population sizepop
vardim: dimension of variables
bound: boundaries of variables
param: algorithm required parameters, it is a list which is consisting of [Ned, Nre, Nc, Ns, C, ped, d_attract, w_attract, d_repellant, w_repellant]
'''
self.sizepop = sizepop
self.vardim = vardim
self.bound = bound
self.population = []
self.bestPopulation = []
self.accuFitness = np.zeros(self.sizepop)
self.fitness = np.zeros(self.sizepop)
self.params = params
self.trace = np.zeros(
(self.params[0] * self.params[1] * self.params[2], 2)) def initialize(self):
'''
initialize the population
'''
for i in xrange(0, self.sizepop):
ind = BFOIndividual(self.vardim, self.bound)
ind.generate()
self.population.append(ind) def evaluate(self):
'''
evaluation of the population fitnesses
'''
for i in xrange(0, self.sizepop):
self.population[i].calculateFitness()
self.fitness[i] = self.population[i].fitness def sortPopulation(self):
'''
sort population according descending order
'''
sortedIdx = np.argsort(self.accuFitness)
newpop = []
newFitness = np.zeros(self.sizepop)
for i in xrange(0, self.sizepop):
ind = self.population[sortedIdx[i]]
newpop.append(ind)
self.fitness[i] = ind.fitness
self.population = newpop def solve(self):
'''
evolution process of baterial clony foraging algorithm
'''
self.t = 0
self.initialize()
self.evaluate()
bestIndex = np.argmin(self.fitness)
self.best = copy.deepcopy(self.population[bestIndex]) for i in xrange(0, self.params[0]):
for j in xrange(0, self.params[1]):
for k in xrange(0, self.params[2]):
self.t += 1
self.chemotaxls()
self.evaluate()
best = np.min(self.fitness)
bestIndex = np.argmin(self.fitness)
if best < self.best.fitness:
self.best = copy.deepcopy(self.population[bestIndex])
self.avefitness = np.mean(self.fitness)
self.trace[self.t - 1, 0] = self.best.fitness
self.trace[self.t - 1, 1] = self.avefitness
print("Generation %d: optimal function value is: %f; average function value is %f" % (
self.t, self.trace[self.t - 1, 0], self.trace[self.t - 1, 1]))
self.reproduction()
self.eliminationAndDispersal() print("Optimal function value is: %f; " %
self.trace[self.t - 1, 0])
print "Optimal solution is:"
print self.best.chrom
self.printResult() def chemotaxls(self):
'''
chemotaxls behavior of baterials
'''
for i in xrange(0, self.sizepop):
tmpInd = copy.deepcopy(self.population[i])
self.fitness[i] += self.communication(tmpInd)
Jlast = self.fitness[i]
rnd = np.random.uniform(low=-1, high=1.0, size=self.vardim)
phi = rnd / np.linalg.norm(rnd)
tmpInd.chrom += self.params[4] * phi
for k in xrange(0, self.vardim):
if tmpInd.chrom[k] < self.bound[0, k]:
tmpInd.chrom[k] = self.bound[0, k]
if tmpInd.chrom[k] > self.bound[1, k]:
tmpInd.chrom[k] = self.bound[1, k]
tmpInd.calculateFitness()
m = 0
while m < self.params[3]:
if tmpInd.fitness < Jlast:
Jlast = tmpInd.fitness
self.population[i] = copy.deepcopy(tmpInd)
# print m, Jlast
tmpInd.fitness += self.communication(tmpInd)
tmpInd.chrom += self.params[4] * phi
for k in xrange(0, self.vardim):
if tmpInd.chrom[k] < self.bound[0, k]:
tmpInd.chrom[k] = self.bound[0, k]
if tmpInd.chrom[k] > self.bound[1, k]:
tmpInd.chrom[k] = self.bound[1, k]
tmpInd.calculateFitness()
m += 1
else:
m = self.params[3]
self.fitness[i] = Jlast
self.accuFitness[i] += Jlast def communication(self, ind):
'''
cell to cell communication
'''
Jcc = 0.0
term1 = 0.0
term2 = 0.0
for j in xrange(0, self.sizepop):
term = 0.0
for k in xrange(0, self.vardim):
term += (ind.chrom[k] -
self.population[j].chrom[k]) ** 2
term1 -= self.params[6] * np.exp(-1 * self.params[7] * term)
term2 += self.params[8] * np.exp(-1 * self.params[9] * term)
Jcc = term1 + term2 return Jcc def reproduction(self):
'''
reproduction of baterials
'''
self.sortPopulation()
newpop = []
for i in xrange(0, self.sizepop / 2):
newpop.append(self.population[i])
for i in xrange(self.sizepop / 2, self.sizepop):
self.population[i] = newpop[i - self.sizepop / 2] def eliminationAndDispersal(self):
'''
elimination and dispersal of baterials
'''
for i in xrange(0, self.sizepop):
rnd = random.random()
if rnd < self.params[5]:
self.population[i].generate() def printResult(self):
'''
plot the result of the baterial clony foraging algorithm
'''
x = np.arange(0, self.t)
y1 = self.trace[:, 0]
y2 = self.trace[:, 1]
plt.plot(x, y1, 'r', label='optimal value')
plt.plot(x, y2, 'g', label='average value')
plt.xlabel("Iteration")
plt.ylabel("function value")
plt.title(
"Baterial clony foraging algorithm for function optimization")
plt.legend()
plt.show()

运行程序:

 if __name__ == "__main__":

     bound = np.tile([[-600], [600]], 25)
bfo = BFO(60, 25, bound, [2, 2, 50, 4, 50, 0.25, 0.1, 0.2, 0.1, 10])
bfo.solve()

ObjFunction见简单遗传算法-python实现

细菌觅食算法-python实现的更多相关文章

  1. pageRank算法 python实现

    一.什么是pagerank PageRank的Page可是认为是网页,表示网页排名,也可以认为是Larry Page(google 产品经理),因为他是这个算法的发明者之一,还是google CEO( ...

  2. 常见排序算法-Python实现

    常见排序算法-Python实现 python 排序 算法 1.二分法     python    32行 right = length-  :  ]   ):  test_list = [,,,,,, ...

  3. kmp算法python实现

    kmp算法python实现 kmp算法 kmp算法用于字符串的模式匹配,也就是找到模式字符串在目标字符串的第一次出现的位置比如abababc那么bab在其位置1处,bc在其位置5处我们首先想到的最简单 ...

  4. KMP算法-Python版

                               KMP算法-Python版 传统法: 从左到右一个个匹配,如果这个过程中有某个字符不匹配,就跳回去,将模式串向右移动一位.这有什么难的? 我们可以 ...

  5. 压缩感知重构算法之IRLS算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  6. 压缩感知重构算法之OLS算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  7. 压缩感知重构算法之CoSaMP算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  8. 压缩感知重构算法之IHT算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  9. 压缩感知重构算法之SP算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

随机推荐

  1. 用Access作为后台数据库支撑,书写一个用C#写入记录的案例

    具体的步骤: 1.创建并打开一个OleDbConnection对象 2.创建插入的SQL语句 3.创建一个OleDbCommand对象 4.使用OleDbCommand对象来插入数据 5.关闭OleD ...

  2. JSON对象和字符串之间的相互转换

    比如我有两个变量,我要将a转换成字符串,将b转换成JSON对象: var a={"name":"tom","sex":"男&quo ...

  3. Android Studio下载与安装

    Android Studio下载与安装 1 2 3 4 5 分步阅读 百度经验:jingyan.baidu.com 自从Google宣布Android Studio将取代Eclipse,正式成为官方集 ...

  4. /etc/profile和~/.bash_profile的区别

    /etc/profile是全局的,是私有的 /etc/profile用于整个系统所有用户, ~/.bash_profile, ~/.profile和~/.bashrc 用于各个用户,这里的" ...

  5. MS-SQL SERVER单列合并的四种常用方法

    /* 原始数据 ID Name ----------- -------------------- 1 吕布 2 张飞 3 赵云 结果 ----------------- 吕布,张飞,赵云 */ )) ...

  6. 在WebApi中实现Cors访问

    Cors是个比较热的技术,这在蒋金楠的博客里也有体现,Cors简单来说就是“跨域资源访问”的意思,这种访问我们指的是Ajax实现的异步访问,形象点说就是,一个A网站公开一些接口方法,对于B网站和C网站 ...

  7. SilverLight自定义ImageButton

    SilverLight中XAML的写法和WPF一样,但是发现在自定义按钮上,没有WPF来的容易,下面说说我制作SilverLight中的ImageButton的一些思路. 在SilverLight中, ...

  8. Caffe学习系列(4):激活层(Activiation Layers)及参数

    在激活层中,对输入数据进行激活操作(实际上就是一种函数变换),是逐元素进行运算的.从bottom得到一个blob数据输入,运算后,从top输入一个blob数据.在运算过程中,没有改变数据的大小,即输入 ...

  9. 流媒体技术之RTSP

    流媒体技术之RTSP 标签: RTSP技术移动流媒体 2016-06-19 18:48 38人阅读 评论(0) 收藏 举报  分类: 流媒体相关技术 版权声明:本文为博主原创文章,未经博主允许不得转载 ...

  10. netty定时器HashedWheelTimer(zz)

    http://www.tianjiaguo.com/programming-language/java-language/netty%E5%AE%9A%E6%97%B6%E5%99%A8hashedw ...