细菌觅食算法-python实现
BFOIndividual.py
import numpy as np
import ObjFunction class BFOIndividual: '''
individual of baterial clony foraging algorithm
''' def __init__(self, vardim, bound):
'''
vardim: dimension of variables
bound: boundaries of variables
'''
self.vardim = vardim
self.bound = bound
self.fitness = 0.
self.trials = 0 def generate(self):
'''
generate a random chromsome for baterial clony foraging algorithm
'''
len = self.vardim
rnd = np.random.random(size=len)
self.chrom = np.zeros(len)
for i in xrange(0, len):
self.chrom[i] = self.bound[0, i] + \
(self.bound[1, i] - self.bound[0, i]) * rnd[i] def calculateFitness(self):
'''
calculate the fitness of the chromsome
'''
# self.fitness = ObjFunction.GrieFunc(
# self.vardim, self.chrom, self.bound)
s1 = 0.
s2 = 1.
for i in range(1, self.vardim + 1):
s1 = s1 + self.chrom[i - 1] ** 2
s2 = s2 * np.cos(self.chrom[i - 1] / np.sqrt(i))
y = (1. / 4000.) * s1 - s2 + 1
self.fitness = y
BFO.py
import numpy as np
from BFOIndividual import BFOIndividual
import random
import copy
import matplotlib.pyplot as plt
import math class BacterialForagingOptimization: '''
The class for baterial foraging optimization algorithm
''' def __init__(self, sizepop, vardim, bound, params):
'''
sizepop: population sizepop
vardim: dimension of variables
bound: boundaries of variables
param: algorithm required parameters, it is a list which is consisting of [Ned, Nre, Nc, Ns, C, ped, d_attract, w_attract, d_repellant, w_repellant]
'''
self.sizepop = sizepop
self.vardim = vardim
self.bound = bound
self.population = []
self.bestPopulation = []
self.accuFitness = np.zeros(self.sizepop)
self.fitness = np.zeros(self.sizepop)
self.params = params
self.trace = np.zeros(
(self.params[0] * self.params[1] * self.params[2], 2)) def initialize(self):
'''
initialize the population
'''
for i in xrange(0, self.sizepop):
ind = BFOIndividual(self.vardim, self.bound)
ind.generate()
self.population.append(ind) def evaluate(self):
'''
evaluation of the population fitnesses
'''
for i in xrange(0, self.sizepop):
self.population[i].calculateFitness()
self.fitness[i] = self.population[i].fitness def sortPopulation(self):
'''
sort population according descending order
'''
sortedIdx = np.argsort(self.accuFitness)
newpop = []
newFitness = np.zeros(self.sizepop)
for i in xrange(0, self.sizepop):
ind = self.population[sortedIdx[i]]
newpop.append(ind)
self.fitness[i] = ind.fitness
self.population = newpop def solve(self):
'''
evolution process of baterial clony foraging algorithm
'''
self.t = 0
self.initialize()
self.evaluate()
bestIndex = np.argmin(self.fitness)
self.best = copy.deepcopy(self.population[bestIndex]) for i in xrange(0, self.params[0]):
for j in xrange(0, self.params[1]):
for k in xrange(0, self.params[2]):
self.t += 1
self.chemotaxls()
self.evaluate()
best = np.min(self.fitness)
bestIndex = np.argmin(self.fitness)
if best < self.best.fitness:
self.best = copy.deepcopy(self.population[bestIndex])
self.avefitness = np.mean(self.fitness)
self.trace[self.t - 1, 0] = self.best.fitness
self.trace[self.t - 1, 1] = self.avefitness
print("Generation %d: optimal function value is: %f; average function value is %f" % (
self.t, self.trace[self.t - 1, 0], self.trace[self.t - 1, 1]))
self.reproduction()
self.eliminationAndDispersal() print("Optimal function value is: %f; " %
self.trace[self.t - 1, 0])
print "Optimal solution is:"
print self.best.chrom
self.printResult() def chemotaxls(self):
'''
chemotaxls behavior of baterials
'''
for i in xrange(0, self.sizepop):
tmpInd = copy.deepcopy(self.population[i])
self.fitness[i] += self.communication(tmpInd)
Jlast = self.fitness[i]
rnd = np.random.uniform(low=-1, high=1.0, size=self.vardim)
phi = rnd / np.linalg.norm(rnd)
tmpInd.chrom += self.params[4] * phi
for k in xrange(0, self.vardim):
if tmpInd.chrom[k] < self.bound[0, k]:
tmpInd.chrom[k] = self.bound[0, k]
if tmpInd.chrom[k] > self.bound[1, k]:
tmpInd.chrom[k] = self.bound[1, k]
tmpInd.calculateFitness()
m = 0
while m < self.params[3]:
if tmpInd.fitness < Jlast:
Jlast = tmpInd.fitness
self.population[i] = copy.deepcopy(tmpInd)
# print m, Jlast
tmpInd.fitness += self.communication(tmpInd)
tmpInd.chrom += self.params[4] * phi
for k in xrange(0, self.vardim):
if tmpInd.chrom[k] < self.bound[0, k]:
tmpInd.chrom[k] = self.bound[0, k]
if tmpInd.chrom[k] > self.bound[1, k]:
tmpInd.chrom[k] = self.bound[1, k]
tmpInd.calculateFitness()
m += 1
else:
m = self.params[3]
self.fitness[i] = Jlast
self.accuFitness[i] += Jlast def communication(self, ind):
'''
cell to cell communication
'''
Jcc = 0.0
term1 = 0.0
term2 = 0.0
for j in xrange(0, self.sizepop):
term = 0.0
for k in xrange(0, self.vardim):
term += (ind.chrom[k] -
self.population[j].chrom[k]) ** 2
term1 -= self.params[6] * np.exp(-1 * self.params[7] * term)
term2 += self.params[8] * np.exp(-1 * self.params[9] * term)
Jcc = term1 + term2 return Jcc def reproduction(self):
'''
reproduction of baterials
'''
self.sortPopulation()
newpop = []
for i in xrange(0, self.sizepop / 2):
newpop.append(self.population[i])
for i in xrange(self.sizepop / 2, self.sizepop):
self.population[i] = newpop[i - self.sizepop / 2] def eliminationAndDispersal(self):
'''
elimination and dispersal of baterials
'''
for i in xrange(0, self.sizepop):
rnd = random.random()
if rnd < self.params[5]:
self.population[i].generate() def printResult(self):
'''
plot the result of the baterial clony foraging algorithm
'''
x = np.arange(0, self.t)
y1 = self.trace[:, 0]
y2 = self.trace[:, 1]
plt.plot(x, y1, 'r', label='optimal value')
plt.plot(x, y2, 'g', label='average value')
plt.xlabel("Iteration")
plt.ylabel("function value")
plt.title(
"Baterial clony foraging algorithm for function optimization")
plt.legend()
plt.show()
运行程序:
if __name__ == "__main__":
bound = np.tile([[-600], [600]], 25)
bfo = BFO(60, 25, bound, [2, 2, 50, 4, 50, 0.25, 0.1, 0.2, 0.1, 10])
bfo.solve()
ObjFunction见简单遗传算法-python实现。
细菌觅食算法-python实现的更多相关文章
- pageRank算法 python实现
一.什么是pagerank PageRank的Page可是认为是网页,表示网页排名,也可以认为是Larry Page(google 产品经理),因为他是这个算法的发明者之一,还是google CEO( ...
- 常见排序算法-Python实现
常见排序算法-Python实现 python 排序 算法 1.二分法 python 32行 right = length- : ] ): test_list = [,,,,,, ...
- kmp算法python实现
kmp算法python实现 kmp算法 kmp算法用于字符串的模式匹配,也就是找到模式字符串在目标字符串的第一次出现的位置比如abababc那么bab在其位置1处,bc在其位置5处我们首先想到的最简单 ...
- KMP算法-Python版
KMP算法-Python版 传统法: 从左到右一个个匹配,如果这个过程中有某个字符不匹配,就跳回去,将模式串向右移动一位.这有什么难的? 我们可以 ...
- 压缩感知重构算法之IRLS算法python实现
压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...
- 压缩感知重构算法之OLS算法python实现
压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...
- 压缩感知重构算法之CoSaMP算法python实现
压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...
- 压缩感知重构算法之IHT算法python实现
压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...
- 压缩感知重构算法之SP算法python实现
压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...
随机推荐
- android stuio eclipse映射下的快捷键
转:关于 android stuio eclipse映射下的快捷键 http://www.cnblogs.com/0616--ataozhijia/p/3870064.html 会持续更新)这边讲的常 ...
- sublime配置全攻略
大家好,今天给大家分享一款编辑器:sublime text2 我用过很多编辑器, EditPlus.EmEditor.Notepad++.Notepad2.UltraEdit.Editra.V ...
- 关于URL编码/javascript/js url 编码
一.问题的由来 URL就是网址,只要上网,就一定会用到. 一般来说,URL只能使用英文字母.阿拉伯数字和某些标点符号,不能使用其他文字和符号.比如,世界上有英文字母的网址 “http://www.ab ...
- Netty5-应答服务器
需求: 服务端:接收客户端请求,返回当前系统时间 客户端:发起时间请求 服务端 package org.zln.netty.five.timer; import io.netty.bootstrap. ...
- 19SpringMvc_在业务控制方法中收集List集合中包含JavaBean参数
本文要实现的功能是给一张表单:
- Qt——右键菜单
所谓“右键菜单”,我们可以这样来看:右键+菜单.所以我们可以定义一个菜单,然后重写鼠标点击事件,令菜单在鼠标右击的时候弹出来.这种方法是可以的,但是Qt提供了一种专门用于右键菜单的方法,且看下面这个属 ...
- 构建基于WCF Restful Service的服务
前言 传统的Asmx服务,由于遵循SOAP协议,所以返回内容以xml方式组织.并且客户端需要添加服务端引用才能使用(虽然看到网络上已经提供了这方面的Dynamic Proxy,但是没有这种方式简便), ...
- [CareerCup] 11.8 The Rank of Number 数的排行
11.8 Imagine you are reading in a stream of integers. Periodically, you wish to be able to look up t ...
- 20135202闫佳歆--week 9 期中总结
期中总结 前半学期的主要学习内容是学习mooc课程<Linux内核分析>以及课本<Linux内核设计与实现>. 所涉及知识点总结如下: 1. Linux内核启动的过程--以Me ...
- Opencv step by step - 图像融合
两个图像的融合就是像素的融合了,其实手动操作即可,用函数操作更方便了. 下面代码的作用是融合阿狸和doctor,很和谐有木有! #include <cv.h> #include <h ...