BFOIndividual.py

 import numpy as np
import ObjFunction class BFOIndividual: '''
individual of baterial clony foraging algorithm
''' def __init__(self, vardim, bound):
'''
vardim: dimension of variables
bound: boundaries of variables
'''
self.vardim = vardim
self.bound = bound
self.fitness = 0.
self.trials = 0 def generate(self):
'''
generate a random chromsome for baterial clony foraging algorithm
'''
len = self.vardim
rnd = np.random.random(size=len)
self.chrom = np.zeros(len)
for i in xrange(0, len):
self.chrom[i] = self.bound[0, i] + \
(self.bound[1, i] - self.bound[0, i]) * rnd[i] def calculateFitness(self):
'''
calculate the fitness of the chromsome
'''
# self.fitness = ObjFunction.GrieFunc(
# self.vardim, self.chrom, self.bound)
s1 = 0.
s2 = 1.
for i in range(1, self.vardim + 1):
s1 = s1 + self.chrom[i - 1] ** 2
s2 = s2 * np.cos(self.chrom[i - 1] / np.sqrt(i))
y = (1. / 4000.) * s1 - s2 + 1
self.fitness = y

BFO.py

 import numpy as np
from BFOIndividual import BFOIndividual
import random
import copy
import matplotlib.pyplot as plt
import math class BacterialForagingOptimization: '''
The class for baterial foraging optimization algorithm
''' def __init__(self, sizepop, vardim, bound, params):
'''
sizepop: population sizepop
vardim: dimension of variables
bound: boundaries of variables
param: algorithm required parameters, it is a list which is consisting of [Ned, Nre, Nc, Ns, C, ped, d_attract, w_attract, d_repellant, w_repellant]
'''
self.sizepop = sizepop
self.vardim = vardim
self.bound = bound
self.population = []
self.bestPopulation = []
self.accuFitness = np.zeros(self.sizepop)
self.fitness = np.zeros(self.sizepop)
self.params = params
self.trace = np.zeros(
(self.params[0] * self.params[1] * self.params[2], 2)) def initialize(self):
'''
initialize the population
'''
for i in xrange(0, self.sizepop):
ind = BFOIndividual(self.vardim, self.bound)
ind.generate()
self.population.append(ind) def evaluate(self):
'''
evaluation of the population fitnesses
'''
for i in xrange(0, self.sizepop):
self.population[i].calculateFitness()
self.fitness[i] = self.population[i].fitness def sortPopulation(self):
'''
sort population according descending order
'''
sortedIdx = np.argsort(self.accuFitness)
newpop = []
newFitness = np.zeros(self.sizepop)
for i in xrange(0, self.sizepop):
ind = self.population[sortedIdx[i]]
newpop.append(ind)
self.fitness[i] = ind.fitness
self.population = newpop def solve(self):
'''
evolution process of baterial clony foraging algorithm
'''
self.t = 0
self.initialize()
self.evaluate()
bestIndex = np.argmin(self.fitness)
self.best = copy.deepcopy(self.population[bestIndex]) for i in xrange(0, self.params[0]):
for j in xrange(0, self.params[1]):
for k in xrange(0, self.params[2]):
self.t += 1
self.chemotaxls()
self.evaluate()
best = np.min(self.fitness)
bestIndex = np.argmin(self.fitness)
if best < self.best.fitness:
self.best = copy.deepcopy(self.population[bestIndex])
self.avefitness = np.mean(self.fitness)
self.trace[self.t - 1, 0] = self.best.fitness
self.trace[self.t - 1, 1] = self.avefitness
print("Generation %d: optimal function value is: %f; average function value is %f" % (
self.t, self.trace[self.t - 1, 0], self.trace[self.t - 1, 1]))
self.reproduction()
self.eliminationAndDispersal() print("Optimal function value is: %f; " %
self.trace[self.t - 1, 0])
print "Optimal solution is:"
print self.best.chrom
self.printResult() def chemotaxls(self):
'''
chemotaxls behavior of baterials
'''
for i in xrange(0, self.sizepop):
tmpInd = copy.deepcopy(self.population[i])
self.fitness[i] += self.communication(tmpInd)
Jlast = self.fitness[i]
rnd = np.random.uniform(low=-1, high=1.0, size=self.vardim)
phi = rnd / np.linalg.norm(rnd)
tmpInd.chrom += self.params[4] * phi
for k in xrange(0, self.vardim):
if tmpInd.chrom[k] < self.bound[0, k]:
tmpInd.chrom[k] = self.bound[0, k]
if tmpInd.chrom[k] > self.bound[1, k]:
tmpInd.chrom[k] = self.bound[1, k]
tmpInd.calculateFitness()
m = 0
while m < self.params[3]:
if tmpInd.fitness < Jlast:
Jlast = tmpInd.fitness
self.population[i] = copy.deepcopy(tmpInd)
# print m, Jlast
tmpInd.fitness += self.communication(tmpInd)
tmpInd.chrom += self.params[4] * phi
for k in xrange(0, self.vardim):
if tmpInd.chrom[k] < self.bound[0, k]:
tmpInd.chrom[k] = self.bound[0, k]
if tmpInd.chrom[k] > self.bound[1, k]:
tmpInd.chrom[k] = self.bound[1, k]
tmpInd.calculateFitness()
m += 1
else:
m = self.params[3]
self.fitness[i] = Jlast
self.accuFitness[i] += Jlast def communication(self, ind):
'''
cell to cell communication
'''
Jcc = 0.0
term1 = 0.0
term2 = 0.0
for j in xrange(0, self.sizepop):
term = 0.0
for k in xrange(0, self.vardim):
term += (ind.chrom[k] -
self.population[j].chrom[k]) ** 2
term1 -= self.params[6] * np.exp(-1 * self.params[7] * term)
term2 += self.params[8] * np.exp(-1 * self.params[9] * term)
Jcc = term1 + term2 return Jcc def reproduction(self):
'''
reproduction of baterials
'''
self.sortPopulation()
newpop = []
for i in xrange(0, self.sizepop / 2):
newpop.append(self.population[i])
for i in xrange(self.sizepop / 2, self.sizepop):
self.population[i] = newpop[i - self.sizepop / 2] def eliminationAndDispersal(self):
'''
elimination and dispersal of baterials
'''
for i in xrange(0, self.sizepop):
rnd = random.random()
if rnd < self.params[5]:
self.population[i].generate() def printResult(self):
'''
plot the result of the baterial clony foraging algorithm
'''
x = np.arange(0, self.t)
y1 = self.trace[:, 0]
y2 = self.trace[:, 1]
plt.plot(x, y1, 'r', label='optimal value')
plt.plot(x, y2, 'g', label='average value')
plt.xlabel("Iteration")
plt.ylabel("function value")
plt.title(
"Baterial clony foraging algorithm for function optimization")
plt.legend()
plt.show()

运行程序:

 if __name__ == "__main__":

     bound = np.tile([[-600], [600]], 25)
bfo = BFO(60, 25, bound, [2, 2, 50, 4, 50, 0.25, 0.1, 0.2, 0.1, 10])
bfo.solve()

ObjFunction见简单遗传算法-python实现

细菌觅食算法-python实现的更多相关文章

  1. pageRank算法 python实现

    一.什么是pagerank PageRank的Page可是认为是网页,表示网页排名,也可以认为是Larry Page(google 产品经理),因为他是这个算法的发明者之一,还是google CEO( ...

  2. 常见排序算法-Python实现

    常见排序算法-Python实现 python 排序 算法 1.二分法     python    32行 right = length-  :  ]   ):  test_list = [,,,,,, ...

  3. kmp算法python实现

    kmp算法python实现 kmp算法 kmp算法用于字符串的模式匹配,也就是找到模式字符串在目标字符串的第一次出现的位置比如abababc那么bab在其位置1处,bc在其位置5处我们首先想到的最简单 ...

  4. KMP算法-Python版

                               KMP算法-Python版 传统法: 从左到右一个个匹配,如果这个过程中有某个字符不匹配,就跳回去,将模式串向右移动一位.这有什么难的? 我们可以 ...

  5. 压缩感知重构算法之IRLS算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  6. 压缩感知重构算法之OLS算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  7. 压缩感知重构算法之CoSaMP算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  8. 压缩感知重构算法之IHT算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  9. 压缩感知重构算法之SP算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

随机推荐

  1. JavaWeb学习----JSP脚本元素、指令元素、动作元素

    [声明] 欢迎转载,但请保留文章原始出处→_→ 生命壹号:http://www.cnblogs.com/smyhvae/ 文章来源:http://www.cnblogs.com/smyhvae/p/4 ...

  2. java8-3 多态的好处和弊端以及多态的理解

    多态的好处: A:提高了代码的维护性(继承保证) B:提高了代码的扩展性(由多态保证) 猫狗案例代码 class Animal { public void eat(){ System.out.prin ...

  3. css3新属性的总结

    今天继续总结css3的一些css3新样式,先列一个简单的提纲,重要的还是圆角.阴影.渐变.文字缩略,最最重要的是过度transition,变换transform和animation圆角阴影渐变 圆形渐 ...

  4. WinForm 快捷键设置

    一.窗体快捷键,只在窗体上有效果 首先在form_load的时候写上this.KeyPreview=true;//表示窗体接受按键事件 然后如下 private void Frm_KeyDown(ob ...

  5. Lambda表达式关于like问题(未解决)

    参考文章: http://stackoverflow.com/questions/3616215/like-in-lambda-expression-and-linq 1. c=>c.name. ...

  6. 整理MAC下Eclipse的常用快捷键

    整理Eclipse常用快捷键 开发环境切换到Mac下后原来Window下的快捷键很大一部分是不相容的,习惯了快捷键的生活忽然哪天快捷键不起作用了,跟着的就是开发效率明显降低,频繁录入错误的快捷键让Ec ...

  7. hp_jetdirect 9100漏洞检测

    #-*-coding=utf8-*- import socket import sys def main(): if len(sys.argv)<=1: print('Parameters er ...

  8. log4j输出日志乱码(转)

    log4j日志文件乱码问题的解决方法 log4j日志文件中文乱码处理方法 log4j 控制台和文件输出乱码问题解决 写在前面,第三篇文章中将原因解释的最清楚,为什么设置为UTF-8或者GBK就生效了, ...

  9. &10 基本数据结构——指针和对象的实现,有根树的表示

    #1,指针和对象的实现 如果所用的语言或者环境不支持指针和对象,那我们该怎么用数组来将其转化呢?实质上可以将这个问题的本质转化为数组和链表这两种数据结构的转换,准确来说,是将链表表示的数据用数组表示. ...

  10. 20145311利用gdb调试汇编代码

    利用GDB调试汇编代码 首先编写c语言原代码,我使用的是同学分析过的代码 #include<stdio.h>short addend1 = 1;static int addend2 = 2 ...