接上回, 这次做了一个多元回归

这里贴一下代码

import numpy as np
np.random.seed(1337)
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
import keras
from keras.models import Sequential
from keras.layers import Activation
from keras.layers import LSTM
from keras.layers import Dropout
from keras.layers import Dense
import pandas as pd

  

datan = 1000
# 真实参数
ori_weights = [5, -4, 3, -2, 1]
colsn = len(ori_weights)
bias = -1
ori = np.zeros((1, colsn))
ori[0] = np.asarray(ori_weights)
# 列信息
cols_name = [chr(65+i) for i in range(colsn)]
X = np.zeros((colsn, datan)) for i in range(colsn):
X[i] = np.random.normal(1, 0.1, datan)
# 真实Y
Y = np.matmul(ori, X) + bias + np.random.normal(-0.1, 0.1, (datan, ))
# 数据预览
df = pd.DataFrame(X.T, columns=cols_name)
df['Y'] = df.apply(lambda row: np.matmul(ori, [row[k] for k in df.columns] )[0]+bias, axis=1)
df['target'] = Y[0]
df.head()

  

X_train, X_test, Y_train, Y_test = train_test_split(X.T, Y.T, test_size=0.33, random_state=42)

  

neurons = 128
activation_function = 'tanh'
loss = 'mse'
optimizer="adam"
dropout = 0.01
batch_size = 12
epochs = 200

  

model = Sequential()

model.add(LSTM(neurons, return_sequences=True, input_shape=(1, colsn), activation=activation_function))
model.add(Dropout(dropout))
model.add(LSTM(neurons, return_sequences=True, activation=activation_function))
model.add(Dropout(dropout))
model.add(LSTM(neurons, activation=activation_function))
model.add(Dropout(dropout))
model.add(Dense(output_dim=1, input_dim=1))

  

model.compile(loss=loss, optimizer=optimizer)

  

epochs = 2001
for step in range(epochs):
cost = model.train_on_batch(X_train[:, np.newaxis], Y_train)
if step % 30 == 0:
print(f'{step} train cost: ', cost)

  

# test
print('Testing ------------')
cost = model.evaluate(X_test[:, np.newaxis], Y_test, batch_size=40)
print('test cost:', cost)

  

# plotting the prediction
Y_pred = model.predict(X_test[:, np.newaxis])
#
sdf = pd.DataFrame({'test':list(Y_test.T[0]), 'pred':list(Y_pred.T[0])})
sdf.sort_values(by='test', inplace=True)
#
plt.scatter(range(len(Y_test)), list(sdf.test))
plt.plot(range(len(Y_test)), list(sdf.pred), 'r--')
plt.show()

  

  

  

Keras + LSTM 做回归demo 2的更多相关文章

  1. Keras + LSTM 做回归demo

    学习神经网络 想拿lstm 做回归, 网上找demo 基本三种: sin拟合cos 那个, 比特币价格预测(我用相同的代码和数据没有跑成功, 我太菜了)和keras 的一个例子 我基于keras 那个 ...

  2. 循环神经网络LSTM RNN回归:sin曲线预测

    摘要:本篇文章将分享循环神经网络LSTM RNN如何实现回归预测. 本文分享自华为云社区<[Python人工智能] 十四.循环神经网络LSTM RNN回归案例之sin曲线预测 丨[百变AI秀]& ...

  3. 利用Caffe做回归(regression)

    Caffe应该是目前深度学习领域应用最广泛的几大框架之一了,尤其是视觉领域.绝大多数用Caffe的人,应该用的都是基于分类的网络,但有的时候也许会有基于回归的视觉应用的需要,查了一下Caffe官网,还 ...

  4. [翻译]用神经网络做回归(Using Neural Networks With Regression)

    本文英文原文出自这里, 这个博客里面的内容是Java开源, 分布式深度学习项目deeplearning4j的介绍学习文档. 简介: 一般来说, 神经网络常被用来做无监督学习, 分类, 以及回归. 也就 ...

  5. 单向LSTM笔记, LSTM做minist数据集分类

    单向LSTM笔记, LSTM做minist数据集分类 先介绍下torch.nn.LSTM()这个API 1.input_size: 每一个时步(time_step)输入到lstm单元的维度.(实际输入 ...

  6. 使用LSTM做电影评论负面检测——使用朴素贝叶斯才51%,但是使用LSTM可以达到99%准确度

    基本思路: 每个评论取前200个单词.然后生成词汇表,利用词汇index标注评论(对 每条评论的前200个单词编号而已),然后使用LSTM做正负评论检测. 代码解读见[[[评论]]]!embeddin ...

  7. python 做回归

    1 一元线性回归 线性回归是一种简单的模型,但受到广泛应用,比如预测商品价格,成本评估等,都可以用一元线性模型.y = f(x) 叫做一元函数,回归意思就是根据已知数据复原某些值,线性回归(regre ...

  8. keras神经网络做简单的回归问题

    咸鱼了半个多月了,要干点正经事了. 最近在帮老师用神经网络做多变量非线性的回归问题,没有什么心得,但是也要写个博文当个日记. 该回归问题是四个输入,一个输出.自己并不清楚这几个变量有什么关系,因为是跟 ...

  9. 用 LSTM 做时间序列预测的一个小例子(转自简书)

    问题:航班乘客预测 数据:1949 到 1960 一共 12 年,每年 12 个月的数据,一共 144 个数据,单位是 1000 下载地址 目标:预测国际航班未来 1 个月的乘客数 import nu ...

随机推荐

  1. leetcode143. Reorder List

    用快慢双指针,可以使慢指针到达中间的时候快指针到达最后一个元素(奇数),或者倒数第二个元素(偶数).慢指针后面的元素是后半个链表,把后半个链表进行reverse,然后再插在原来的链表中就可以了 /** ...

  2. linux c tcp p2p

    江湖上一直都有这位哥哥的传说,也有很多人说自己就他的真身! 但是... 今天分享一下TCP连接的P2P demo,江湖的规矩也要与时俱进... ———————————————————————————— ...

  3. java 写一个JSON解析的工具类

    上面是一个标准的json的响应内容截图,第一个红圈”per_page”是一个json对象,我们可以根据”per_page”来找到对应值是3,而第二个红圈“data”是一个JSON数组,而不是对象,不能 ...

  4. 关于eclipse常用的一些快捷键

    Ctrl+Alt+H :查看方法被哪些代码调用了 Ctrl + Shif +O :自动引导类包 Ctrl+Shift+/     : 加上段注释 Ctrl+Shift+\  : 取消段注释 ALT+/ ...

  5. Redis.之.环境搭建(集群)

    Redis.之.环境搭建(集群) 现有环境: /u01/app/ |- redis # 单机版 |- redis-3.2.12    # redis源件 所需软件:redis-3.0.0.gem -- ...

  6. Jenkins - ERROR: Exception when publishing, exception message [Failure] Build step 'Send build artifacts over SSH' changed build result to UNSTABLE

    今天在处理Jenkins的时候出现了一些异常,看着控制台,编译都是通过的,只是没有部署上来,查看了控制台日志,如下: 刚开始还以为是权限通道什么的,后来才发现是执行脚本根本不让执行,以前也遇到过,都是 ...

  7. vue实现验证码倒计时60秒的具体代码

    vue实现验证码倒计时60秒的具体代码 <span v-show="show" @click="getCode">获取验证码</span> ...

  8. CCF CSP 201712-1 最小差值

    题目链接:http://118.190.20.162/view.page?gpid=T68 问题描述 试题编号: 201712-1 试题名称: 最小差值 时间限制: 1.0s 内存限制: 256.0M ...

  9. dlo,学习清单

    肥文自动机 模拟纵火 替罪羊 法法塔 ntt

  10. CSS——div垂直居中及div内文字垂直居中

    最近做demo时,经常需要div垂直居中或者让div内文字相对div垂直居中.水平居中比较简单,就不多说了,这里主要记录一下垂直居中的一些方法. 一.div垂直居中的一些方法: 1.当height.w ...