题目链接:BZOJ - 4103

题目分析

THUSC滚粗之后一直没有写这道题,从来没写过可持久化Trie,发现其实和可持久化线段树都是一样的。嗯,有些东西就是明白得太晚。

首先Orz ZYF-ZYF 神犇的题解。

题目给出的 n 和 m 的范围差别很大,n 很小,m 很大,因此可以想到 n 的范围是为了直接暴力枚举。

题目要求的就是 A 的一段区间中的数和 B 的一段区间中的数的异或的第 k 大值。

位运算有关的题目,一般是从高位到低位贪心之类的。

区间异或,一般要使用可持久化 Trie。

我们对于范围大的 B 数组建立可持久化 Trie,这样就可以提取 B 数组的一个区间了。

从高位到低位,枚举 A 数组区间中的每个元素,根据 Trie 结点的信息,求出这一位为 0 和 为 1 的各有多少,并据此确定答案的这一位。

要注意的是,A 数组区间中每个元素要对应的 Trie 结点是不同的,由它们的前几位确定(因为它们的前几位不同,但是要求异或之后前几位相同)。

编辑完这篇博客之后还是一个一个地添加了标签,虽然这个blog马上就要停更了,感觉这几天写的任何一篇都有可能是最后一篇。

奇怪的感觉。

代码

#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <algorithm> using namespace std; const int MaxN = 1000 + 5, MaxM = 300000 + 5, MaxNode = 10000000 + 5; int n, m, p, Index, Ans;
int A[MaxN], B[MaxM], Root[MaxM], Son[MaxNode][2], T[MaxNode], F[MaxN], Q[MaxN]; bool OK[MaxN]; void Build(int &x, int y, int Num, int Bit)
{
if (!x) x = ++Index;
if (Bit == 0)
{
T[x] = T[y] + 1;
return;
}
if (Num & (1 << (Bit - 1)))
{
Son[x][0] = Son[y][0];
Build(Son[x][1], Son[y][1], Num, Bit - 1);
}
else
{
Son[x][1] = Son[y][1];
Build(Son[x][0], Son[y][0], Num, Bit - 1);
}
T[x] = T[Son[x][0]] + T[Son[x][1]];
} int main()
{
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; ++i) scanf("%d", &A[i]);
for (int i = 1; i <= m; ++i)
{
scanf("%d", &B[i]);
Build(Root[i], Root[i - 1], B[i], 31);
}
scanf("%d", &p);
int u, d, l, r, kk;
for (int i = 1; i <= p; ++i)
{
scanf("%d%d%d%d%d", &u, &d, &l, &r, &kk);
kk = (d - u + 1) * (r - l + 1) - kk + 1;
Ans = 0;
for (int j = u; j <= d; ++j)
{
F[j] = Root[r];
Q[j] = Root[l - 1];
}
for (int j = 30; j >= 0; --j)
{
int x, Temp = 0;
for (int k = u; k <= d; ++k)
{
x = (A[k] & (1 << j));
if (x) Temp += T[Son[F[k]][1]] - T[Son[Q[k]][1]];
else Temp += T[Son[F[k]][0]] - T[Son[Q[k]][0]];
}
if (Temp >= kk)
{
for (int k = u; k <= d; ++k)
{
x = (A[k] & (1 << j));
if (x)
{
F[k] = Son[F[k]][1];
Q[k] = Son[Q[k]][1];
}
else
{
F[k] = Son[F[k]][0];
Q[k] = Son[Q[k]][0];
}
}
}
else
{
kk -= Temp;
Ans |= (1 << j);
for (int k = u; k <= d; ++k)
{
x = (A[k] & (1 << j));
if (x)
{
F[k] = Son[F[k]][0];
Q[k] = Son[Q[k]][0];
}
else
{
F[k] = Son[F[k]][1];
Q[k] = Son[Q[k]][1];
}
}
}
}
printf("%d\n", Ans);
}
return 0;
}

  

[BZOJ 4103] [Thu Summer Camp 2015] 异或运算 【可持久化Trie】的更多相关文章

  1. BZOJ 4103: [Thu Summer Camp 2015]异或运算 可持久化trie

    开始想了一个二分+可持久化trie验证,比正解多一个 log 仔细思考,你发现你可以直接按位枚举,然后在可持久化 trie 上二分就好了. code: #include <bits/stdc++ ...

  2. [BZOJ4103][Thu Summer Camp 2015]异或运算 可持久化Trie树

    4103: [Thu Summer Camp 2015]异或运算 Time Limit: 20 Sec  Memory Limit: 512 MB Description 给定长度为n的数列X={x1 ...

  3. 【bzoj4103】[Thu Summer Camp 2015]异或运算 可持久化trie树

    Description 给定长度为n的数列X={x1,x2,...,xn}和长度为m的数列Y={y1,y2,...,ym},令矩阵A中第i行第j列的值Aij=xi xor yj,每次询问给定矩形区域i ...

  4. 【BZOJ 4103】 4103: [Thu Summer Camp 2015]异或运算 (可持久化Trie)

    4103: [Thu Summer Camp 2015]异或运算 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 474  Solved: 258 De ...

  5. 【BZOJ 4103】 [Thu Summer Camp 2015]异或运算 可持久化01Trie

    我们观察数据:树套树 PASS    主席树 PASS  一层一个Trie PASS 再看,异或!我们就把目光暂时定在01Tire然后我们发现,我们可以带着一堆点在01Trie上行走,因为O(n*q* ...

  6. BZOJ4103 [Thu Summer Camp 2015]异或运算 【可持久化trie树】

    题目链接 BZOJ4103 题解 一眼看过去是二维结构,实则未然需要树套树之类的数据结构 区域异或和,就一定是可持久化\(trie\)树 观察数据,\(m\)非常大,而\(n\)和\(p\)比较小,甚 ...

  7. bzoj4103 [Thu Summer Camp 2015]异或运算(可持久化trie)

    内存限制:512 MiB 时间限制:1000 ms 题目描述 给定长度为n的数列X={x1,x2,...,xn}和长度为m的数列Y={y1,y2,...,ym},令矩阵A中第i行第j列的值Aij=xi ...

  8. bzoj4103: [Thu Summer Camp 2015]异或运算

    对于每个询问暴力枚举x~y,然后在Trie去找第k大,开始我写了个二分答案然后算比当前答案大的个数,打了个第10个点的表就跑出19s+比bzoj垫底还慢4s+ 然而不用二分,直接1000个点一起在树上 ...

  9. bzoj:4105: [Thu Summer Camp 2015]平方运算

    Description   Input 第一行有三个整数N,M,p,分别代表序列的长度.平方操作与询问操作的总次数以及在平方操作中所要模的数.   接下来一行N个数代表一开始的序列{X1,X2,... ...

随机推荐

  1. 信号量 Semaphore

    一.简介         信号量(Semaphore),有时被称为信号灯,是在多线程环境下使用,负责协调各个线程, 以保证它们能够正确.合理的使用公共资源. Semaphore可以控制某个资源可被同时 ...

  2. [gulp] gulp lint 忽略文件

    how does the ignore parameter works in gulp and nodemon? 参考了 前端构建工具gulp入门教程,里面的lint我不需要检查所有js下面的文件,因 ...

  3. 今天学习image在html中的应用

    今天学习image在html中的应用 上次在学习超级链接的使用中有一小问题,是在添加网址中href="http://www.baidu.com" 中不能忘记http://,否则链接 ...

  4. 介绍map.entry接口

    Map是java中的接口,Map.Entry是Map的一个内部接口.java.util.Map.Entry接口主要就是在遍历map的时候用到. Map提供了一些常用方法,如keySet().entry ...

  5. 从NSM到Parquet:存储结构的衍化

    http://blog.csdn.net/dc_726/article/details/41777661 为了优化MapReduce及MR之前的各种工具的性能,在Hadoop内建的数据存储格式外,又涌 ...

  6. spring beans的写入工具——spring-beans-writer

    spring-beans-writer是我曾经为动态生成spring beans配置文件做的一个写入工具,托管地址: https://github.com/bluejoe2008/spring-bea ...

  7. GWT环境搭建--eclipse

    上面下来需求,需要用到GWT,以前没接触过,搭个开发环境研究研究 安装软件我放在百度云盘里了(其他版本自己找,我的版本 eclipse4.4 luna  gwt2.7) 链接:http://pan.b ...

  8. Sql三种分页方法

    --分页三种方法--第一种 ROW_NUMBER() OVER( ORDER BY OrgID) AS indexs 大于pagesize*pageindex,少于等于pagesize*(pagein ...

  9. SQL Server高级内容之表表达式和复习

    1. 表表达式 (1) 将表作为一个源或将查询的一个结果集作为一个源,对源做处理,然后得到一个新的数据源,对其进行查询.  (2)表表达式放在from子句中 (3)派生表,将表的查询得到的结果集作为一 ...

  10. ios Swift 备忘录

    Variables var myInt = var myExplicitInt: Int = // explicit type var x = , y = , z = // declare multi ...