Wall
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 26286   Accepted: 8760

Description

Once upon a time there was a greedy King who ordered his chief Architect to build a wall around the King's castle. The King was so greedy, that he would not listen to his Architect's proposals to build a beautiful brick wall with a perfect shape and nice tall towers. Instead, he ordered to build the wall around the whole castle using the least amount of stone and labor, but demanded that the wall should not come closer to the castle than a certain distance. If the King finds that the Architect has used more resources to build the wall than it was absolutely necessary to satisfy those requirements, then the Architect will loose his head. Moreover, he demanded Architect to introduce at once a plan of the wall listing the exact amount of resources that are needed to build the wall. 

Your task is to help poor Architect to save his head, by writing a program that will find the minimum possible length of the wall that he could build around the castle to satisfy King's requirements.

The task is somewhat simplified by the fact, that the King's castle has a polygonal shape and is situated on a flat ground. The Architect has already established a Cartesian coordinate system and has precisely measured the coordinates of all castle's vertices in feet.

Input

The first line of the input file contains two integer numbers N and L separated by a space. N (3 <= N <= 1000) is the number of vertices in the King's castle, and L (1 <= L <= 1000) is the minimal number of feet that King allows for the wall to come close to the castle.

Next N lines describe coordinates of castle's vertices in a clockwise order. Each line contains two integer numbers Xi and Yi separated by a space (-10000 <= Xi, Yi <= 10000) that represent the coordinates of ith vertex. All vertices are different and the sides of the castle do not intersect anywhere except for vertices.

Output

Write to the output file the single number that represents the minimal possible length of the wall in feet that could be built around the castle to satisfy King's requirements. You must present the integer number of feet to the King, because the floating numbers are not invented yet. However, you must round the result in such a way, that it is accurate to 8 inches (1 foot is equal to 12 inches), since the King will not tolerate larger error in the estimates.

Sample Input

9 100
200 400
300 400
300 300
400 300
400 400
500 400
500 200
350 200
200 200

Sample Output

1628

Hint

结果四舍五入就可以了

题目大意:

有一个贪心的国王,他要你的朋友帮他围着他的城堡砌墙,然而他要求你的墙总是隔他的城堡L的距离,并且要求你使用的墙面长度(周长)最小,不然就砍了你朋友。输入给出N个点的坐标构成这个城堡,给出距离L。

解题思路:

大家可以动手画一画给出的样例(很快就画完了)。发现当点 i 和 i+1 和 i+2 是一条直线的时候,也就是两条线段中间不转弯的情况下,我们的周长直接加线段长就好了。但是如果中间出现了转交,那么有两种情况。让我们看看下面的图:

从图中可以看出,如果出现了这样的两个角,那么还不如我们直接砌直线。所以我们可以得出我们构造的最短周长,应该是构造一个凸包。我们的周长就是所有的直线长度加上转角的特殊弧长。弧长怎么算呢?细心一点就知道每个转角对应的圆心角应该是π-内角(我们作城堡直线路径的垂线看看!)。

由此我们再加上这些弧长就是我们的答案了!

代码如下:

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
using namespace std;
#define eps 10e-9
#define MAX 1002 struct Point
{
double x,y;
Point() {}
Point ( double x , double y ) : x(x) , y(y) {}
};
typedef Point Vector;
Point operator - ( Point a , Point b ) { return Point ( a.x - b.x , a.y - b.y ); } bool cmp ( Point a, Point b )
{
if ( a.x != b.x ) return a.x < b.x;
else return a.y < b.y;
} double Length ( Vector v )
{
return sqrt ( v.x * v.x + v.y * v.y );
} double Dot ( Vector u , Vector v )
{
return u.x * v.x + u.y * v.y;
} int dcmp ( double x )
{
if ( fabs ( x ) < eps ) return 0;
else return x < 0 ? -1 : 1 ;
} double Distance ( Point a , Point b )
{
return sqrt ( ( a.x - b.x ) * ( a.x - b.x ) + ( a.y - b.y ) * ( a.y - b.y ) );
} double Cross ( Vector u , Vector v )
{
return u.x * v.y - u.y * v.x;
} double Angle ( Vector u , Vector v ) { return acos ( Dot ( u , v ) / Length ( u ) / Length ( v ) ); } int ConvexHull ( Point *p , int n , Point *ch ) //求凸包
{
int m = 0;
sort ( p , p + n , cmp );
for ( int i = 0 ; i < n ; i ++ )
{
while ( m > 1 && Cross ( ch[m-1] - ch[m-2] , p[i] - ch[m-2] ) <= 0 ) m --;
ch[m++] = p[i];
}
int k = m;
for ( int i = n - 2 ; i >= 0 ; i -- )
{
while ( m > k && Cross ( ch[m-1] - ch[m-2] , p[i] - ch[m-2] ) <= 0 ) m-- ;
ch[m++] = p[i];
}
if ( n > 1 ) m --;
return m;
} int main()
{
int n,l;
Point cas[MAX],ch[MAX];
scanf ( "%d %d" , &n , &l );
for ( int i = 0 ; i < n ; i ++ )
scanf ( "%lf %lf" , &cas[i].x , &cas[i].y );
int cnt = ConvexHull ( cas , n , ch );
double ans = 0;
for ( int i = 0 ; i < cnt ; i ++ )
ans += Distance ( ch[(i+1)%cnt] , ch[i] );
for ( int i = 0 ; i < cnt ; i ++ )
{
double ang = Angle ( ch[(i+2)%cnt] - ch[(i+1)%cnt] , ch[(i+1)%cnt] - ch[i] );
if ( dcmp ( ang ) != 0 )
{
ans += ang * l;
}
}
if ( ans - (int)ans - 0.5 > 0 )
printf ( "%d\n" , (int) ans + 1 );
else printf ( "%d\n" , (int)ans );
return 0;
}

技巧总结:

凸包在计算几何中占有很重要的地位!

POJ 1113 Wall 凸包求周长的更多相关文章

  1. POJ 1113 Wall 凸包 裸

    LINK 题意:给出一个简单几何,问与其边距离长为L的几何图形的周长. 思路:求一个几何图形的最小外接几何,就是求凸包,距离为L相当于再多增加上一个圆的周长(因为只有四个角).看了黑书使用graham ...

  2. poj 1113 Wall 凸包的应用

    题目链接:poj 1113   单调链凸包小结 题解:本题用到的依然是凸包来求,最短的周长,只是多加了一个圆的长度而已,套用模板,就能搞定: AC代码: #include<iostream> ...

  3. poj 1113 wall(凸包裸题)(记住求线段距离的时候是点积,点积是cos)

    Wall Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 43274   Accepted: 14716 Descriptio ...

  4. POJ 1113 - Wall 凸包

    此题为凸包问题模板题,题目中所给点均为整点,考虑到数据范围问题求norm()时先转换成double了,把norm()那句改成<vector>压栈即可求得凸包. 初次提交被坑得很惨,在GDB ...

  5. TZOJ 2569 Wooden Fence(凸包求周长)

    描述 Did you ever wonder what happens to your money when you deposit them to a bank account? All banks ...

  6. poj 1113:Wall(计算几何,求凸包周长)

    Wall Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 28462   Accepted: 9498 Description ...

  7. POJ 1113 Wall(凸包)

    [题目链接] http://poj.org/problem?id=1113 [题目大意] 给出一个城堡,要求求出距城堡距离大于L的地方建围墙将城堡围起来求所要围墙的长度 [题解] 画图易得答案为凸包的 ...

  8. POJ 1113 Wall (凸包)

    Description Once upon a time there was a greedy King who ordered his chief Architect to build a wall ...

  9. 2018.07.04 POJ 1113 Wall(凸包)

    Wall Time Limit: 1000MS Memory Limit: 10000K Description Once upon a time there was a greedy King wh ...

随机推荐

  1. 关于datagridview单元格不切换焦点无法获得新输入数据的问题解决方法

    问题描述:将EXCEL中的数据导入到dataGridView中,然后通过点击toolStripButton对dataGrideView中的数据进行处理,在测试时,向dataGridView中的某个单元 ...

  2. HTML 表单和表格

    1.使用表单标签 网站使用 HTML 表单可与用户进行交互,表单元素是允许用户在表单中输入内容,比如:文本框.文本域.单选框.复选框.下拉列表.按钮等等,表单可以把浏览者输入的数据传送到服务器端,这样 ...

  3. JavaScript经典面试题系列

    1.javascript的typeof返回哪些数据类型 Object number function boolean underfind 2.例举3种强制类型转换和2种隐式类型转换? 强制(parse ...

  4. php精粹-编写高效的php代码 --- php设计模式

    1.选择一个最合适的设计模式 没有任何事物是完美的,也没有人说过设计模式一个严格的放之四海而皆准的解决方法.因此你可以改变这些模式,使它们更适合手头的工作.对于某些设计模式而言,他们就是所属程序固有的 ...

  5. WPF中嵌入Flash(ActiveX)

    1. 建立 WPF Application. 首先,建立一个名为 FlashinWPF 的 WPF Application 2. 设置 Window 属性. 在 XAML 中修改 Window 的属性 ...

  6. POJ 1472 Instant Complexity 应该叫它编程题。。

    题目:http://poj.org/problem?id=1472 这个题目是分到“模拟题”一类的,我觉得模拟的成分比较少,主要考察编程能力.独立写完这个题特别兴奋...所以我必须好好说一说,独家哦. ...

  7. share my tools With Xcode

    1.让Xcode的控制台支持LLDB类型的打印 在Xcode断点调试的时候, 在控制台输入 po self.view.frame 或者 po id 类型的时候就死翘翘了. 进入正题: 安装LLDB调试 ...

  8. WebViewJavascriptBridge

    上一篇文章介绍了通过UIWebView实现了OC与JS交互的可能性及实现的原理,并且简单的实现了一个小的示例DEMO,当然也有一部分遗留问题,使用原生实现过程比较繁琐,代码难以维护.这篇文章主要介绍下 ...

  9. iOS面试题16719-b

    1. 反转二叉树,不用递归 /*** Definition for a binary tree node.* public class TreeNode {*     int val;*     Tr ...

  10. Android基础学习

    1.specify :指定 2.Nested:嵌套 3.启动模拟器时出现错误信息"Please ensure that adb is correctly located at:XXXXX&q ...