【转】最小生成树——Kruskal算法

标签(空格分隔): 算法


本文是转载,原文在最小生成树-Prim算法和Kruskal算法,因为复试的时候只用到Kruskal算法即可,故这里不再涉及Prim算法,如有需要可到原文查看。

Kruskal算法

1.概览

Kruskal算法是一种用来寻找最小生成树的算法,由Joseph Kruskal在1956年发表。用来解决同样问题的还有Prim算法和Boruvka算法等。三种算法都是贪婪算法的应用。和Boruvka算法不同的地方是,Kruskal算法在图中存在相同权值的边时也有效。

2.算法简单描述

1).记Graph中有v个顶点,e个边

2).新建图Graphnew,Graphnew中拥有原图中相同的e个顶点,但没有边

3).将原图Graph中所有e个边按权值从小到大排序

4).循环:从权值最小的边开始遍历每条边 直至图Graph中所有的节点都在同一个连通分量中

if 这条边连接的两个节点于图Graphnew中不在同一个连通分量中
添加这条边到图Graphnew中

图例描述:

首先第一步,我们有一张图Graph,有若干点和边

将所有的边的长度排序,用排序的结果作为我们选择边的依据。这里再次体现了贪心算法的思想。资源排序,对局部最优的资源进行选择,排序完成后,我们率先选择了边AD。这样我们的图就变成了右图

在剩下的边中寻找。我们找到了CE。这里边的权重也是5

依次类推我们找到了6,7,7,即DF,AB,BE。

下面继续选择, BC或者EF尽管现在长度为8的边是最小的未选择的边。但是现在他们已经连通了(对于BC可以通过CE,EB来连接,类似的EF可以通过EB,BA,AD,DF来接连)。所以不需要选择他们。类似的BD也已经连通了(这里上图的连通线用红色表示了)。
最后就剩下EG和FG了。当然我们选择了EG。最后成功的图就是右:

3.简单证明Kruskal算法

对图的顶点数n做归纳,证明Kruskal算法对任意n阶图适用。

归纳基础:

n=1,显然能够找到最小生成树。

归纳过程:

假设Kruskal算法对n≤k阶图适用,那么,在k+1阶图G中,我们把最短边的两个端点a和b做一个合并操作,即把u与v合为一个点v’,把原来接在u和v的边都接到v’上去,这样就能够得到一个k阶图G’(u,v的合并是k+1少一条边),G’最小生成树T’可以用Kruskal算法得到。

我们证明T'+{<u,v>}是G的最小生成树。

用反证法,如果T'+{<u,v>}不是最小生成树,最小生成树是T,即W(T)<W(T'+{<u,v>})。显然T应该包含<u,v>,否则,可以用<u,v>加入到T中,形成一个环,删除环上原有的任意一条边,形成一棵更小权值的生成树。而T-{<u,v>},是G’的生成树。所以W(T-{<u,v>})<=W(T'),也就是W(T)<=W(T')+W(<u,v>)=W(T'+{<u,v>}),产生了矛盾。于是假设不成立,T'+{<u,v>}是G的最小生成树,Kruskal算法对k+1阶图也适用。

由数学归纳法,Kruskal算法得证。

4.代码算法实现


typedef struct
{
char vertex[VertexNum]; //顶点表
int edges[VertexNum][VertexNum]; //邻接矩阵,可看做边表
int n,e; //图中当前的顶点数和边数
}MGraph; typedef struct node
{
int u; //边的起始顶点
int v; //边的终止顶点
int w; //边的权值
}Edge; void kruskal(MGraph G)
{
int i,j,u1,v1,sn1,sn2,k;
int vset[VertexNum]; //辅助数组,判定两个顶点是否连通
int E[EdgeNum]; //存放所有的边
k=0; //E数组的下标从0开始
for (i=0;i<G.n;i++)
{
for (j=0;j<G.n;j++)
{
if (G.edges[i][j]!=0 && G.edges[i][j]!=INF)
{
E[k].u=i;
E[k].v=j;
E[k].w=G.edges[i][j];
k++;
}
}
}
heapsort(E,k,sizeof(E[0])); //堆排序,按权值从小到大排列
for (i=0;i<G.n;i++) //初始化辅助数组
{
vset[i]=i;
}
k=1; //生成的边数,最后要刚好为总边数
j=0; //E中的下标
while (k<G.n)
{
sn1=vset[E[j].u];
sn2=vset[E[j].v]; //得到两顶点属于的集合编号
if (sn1!=sn2) //不在同一集合编号内的话,把边加入最小生成树
{
printf("%d ---> %d, %d",E[j].u,E[j].v,E[j].w);
k++;
for (i=0;i<G.n;i++)
{
if (vset[i]==sn2)
{
vset[i]=sn1;
}
}
}
j++;
}
}

【转】最小生成树——Kruskal算法的更多相关文章

  1. 最小生成树——kruskal算法

    kruskal和prim都是解决最小生成树问题,都是选取最小边,但kruskal是通过对所有边按从小到大的顺序排过一次序之后,配合并查集实现的.我们取出一条边,判断如果它的始点和终点属于同一棵树,那么 ...

  2. 最小生成树Kruskal算法

    Kruskal算法就是把图中的所有边权值排序,然后从最小的边权值开始查找,连接图中的点,当该边的权值较小,但是连接在途中后会形成回路时就舍弃该边,寻找下一边,以此类推,假设有n个点,则只需要查找n-1 ...

  3. 最小生成树------Kruskal算法

    Kruskal最小生成树算法的概略描述:1 T=Φ:2 while(T的边少于n-1条) {3 从E中选取一条最小成本的边(v,w):4 从E中删去(v,w):5 if((v,w)在T中不生成环) { ...

  4. 求最小生成树——Kruskal算法

    给定一个带权值的无向图,要求权值之和最小的生成树,常用的算法有Kruskal算法和Prim算法.这篇文章先介绍Kruskal算法. Kruskal算法的基本思想:先将所有边按权值从小到大排序,然后按顺 ...

  5. 最小生成树 kruskal算法&prim算法

    (先更新到这,后面有时间再补,嘤嘤嘤) 今天给大家简单的讲一下最小生成树的问题吧!(ps:本人目前还比较菜,所以最小生成树最后的结果只能输出最小的权值,不能打印最小生成树的路径) 本Tianc在刚学的 ...

  6. 算法实践--最小生成树(Kruskal算法)

    什么是最小生成树(Minimum Spanning Tree) 每两个端点之间的边都有一个权重值,最小生成树是这些边的一个子集.这些边可以将所有端点连到一起,且总的权重最小 下图所示的例子,最小生成树 ...

  7. 模板——最小生成树kruskal算法+并查集数据结构

    并查集:找祖先并更新,注意路径压缩,不然会时间复杂度巨大导致出错/超时 合并:(我的祖先是的你的祖先的父亲) 找父亲:(初始化祖先是自己的,自己就是祖先) 查询:(我们是不是同一祖先) 路径压缩:(每 ...

  8. 数据结构之最小生成树Kruskal算法

    1. 克鲁斯卡算法介绍 克鲁斯卡尔(Kruskal)算法,是用来求加权连通图的最小生成树的算法. 基本思想:按照权值从小到大的顺序选择n-1条边,并保证这n-1条边不构成回路. 具体做法:首先构造一个 ...

  9. 数据结构:最小生成树--Kruskal算法

    Kruskal算法 Kruskal算法 求解最小生成树的还有一种常见算法是Kruskal算法.它比Prim算法更直观.从直观上看,Kruskal算法的做法是:每次都从剩余边中选取权值最小的,当然,这条 ...

随机推荐

  1. Pysam 处理bam文件

    Pysam可用来处理bam文件 安装: 用 pip 或者 conda即可 使用: Pysam的函数有很多,主要的读取函数有: AlignmentFile:读取BAM/CRAM/SAM文件 Varian ...

  2. python-django-请求响应对象

    用户请求终端的信息: 包括使用的ip地址,浏览器类型等 cookie: 测试测试: def print_request(request): print(request) print("!!! ...

  3. SQL-用到的数据库语句总结

    0.SELECT * FROM  CHARACTER_SETS LIMIT 0,10   #从CHARACTER_SETS表中,从第1行开始,提取10行[包含第1行] 1.SELECT * FROM  ...

  4. KeepAlived双主模式高可用集群

    keepalived是vrrp协议的实现,原生设计目的是为了高可用ipvs服务,keepalived能够配置文件中的定义生成ipvs规则,并能够对各RS的健康状态进行检测:通过共用的虚拟IP地址对外提 ...

  5. stm32串行设备接口SPI控制max31865

    本人是刚入行的嵌入式,之前也没有多少项目经验,故在公司的这几个月里,可谓是如履薄冰,对于公司不同项目使用的不同的设备之多,数据手册之繁杂,让我不禁望洋兴叹,故而不愿意放弃周末这大好的自我提升时间,努力 ...

  6. 零基础学习java------37---------mybatis的高级映射(单表查询,多表(一对一,一对多)),逆向工程,Spring(IOC,DI,创建对象,AOP)

    一.  mybatis的高级映射 1  单表,字段不一致 resultType输出映射: 要求查询的字段名(数据库中表格的字段)和对应的java类型的属性名一致,数据可以完成封装映射 如果字段和jav ...

  7. 零基础学习java------day19-------定时器,线程面试题,Udp,Tcp

    0. 定时器  0.1 概述: 定时器是一个应用十分广泛的线程工具,可用于调度多个定时任务以后台线程的方式执行,在jaa中,可以通过Timew和TimerTask类来实现定义调度的功能 0.2 Tim ...

  8. java职业路线图

  9. Oracle删除重复数据记录

    删除重复记录,利用ROWID 和MIN(或MAX)函数, ROWID在整个数据库中是唯一的,由Oracle自己产生和维护,并唯一标识一行(无论该表中是否有主键和唯一性约束),ROWID确定了每条记录在 ...

  10. Maven项目打包成war包并启动war包运行

    1 项目打包 1.1 右键点击所需要打包的项目,点击如图所示 Maven clean,这里 Maven 会清除掉之前对这个项目所有的打包信息. 1.2进行完 Maven clean 操作后,在ecli ...