LuoguB2147 求 f(x,n) 题解
Content
求给定 \(x,n\),求 \(f(x,n)=\sqrt{n+\sqrt{(n-1)+\sqrt{(n-2)+\sqrt{\dots+2+\sqrt{1+x}}}}}\) 的值。
Solution
乍一看这题目很烦人,其实,如果我们可以转换一下,这道题目就很简单。
我们不妨算下:
\]
然后我们可以发现,\(f(x,n)\) 是一个层层包含的递归关系:如果 \(n=1\),那么 \(f(x,n)=\sqrt{1+x}\),否则,\(f(x,n)=\sqrt{n+f(x,n-1)}\),于是就这么样递归下去然后向上累加答案,足够通过本题。
然而,如果 \(n\) 的范围很大,递归的层数很多,我们如果还用递归的话就会内存爆炸,那么怎么办呢?我们考虑把它转为一个递推公式:
\]
然后你就可以明白了,这不就可以用数组直接循环递推出来就可以了吗?你可能发现了第一维的 \(x\),然后你注意到题目中 \(x\) 是个实数,那么就不能够以它作为数组的第一维,那么怎么办?我们又发现,\(n>1\) 时,\(f_{x,n}\) 只和 \(n\) 和 \(f_{x,n-1}\) 有关,并不和 \(x\) 有关。所以我们考虑直接将第一维省去,得到:
\]
然后你就可以用递推通过本题了。
Code
1 递归
#include <cstdio>
#include <cmath>
using namespace std;
inline double f(double x, int n) {
if(n > 1) return sqrt(n + f(x, n - 1));
else return sqrt(1 + x);
}
int main() {
double x; scanf("%lf", &x);
int n; scanf("%d", &n);
return printf("%.2lf", f(x, n)), 0;
}
2 递推
#include <cstdio>
#include <cmath>
using namespace std;
int main() {
double x; scanf("%lf", &x);
int n; scanf("%d", &n);
double f[10007] = {0.0}; f[1] = sqrt(1 + x);
F(int, i, 2, n) f[i] = sqrt(i + f[i - 1]);
return printf("%.2lf", f[n]), 0;
}
LuoguB2147 求 f(x,n) 题解的更多相关文章
- hdu 1588 求f(b) +f(k+b) +f(2k+b) +f((n-1)k +b) 之和 (矩阵快速幂)
g(i)=k*i+b; 0<=i<nf(0)=0f(1)=1f(n)=f(n-1)+f(n-2) (n>=2)求f(b) +f(k+b) +f(2*k+b) +f((n-1)*k + ...
- ACM_求f(n)
求f(n) Time Limit: 2000/1000ms (Java/Others) Problem Description: 设函数f(n)=1*1*1+2*2*2+3*3*3+...+n*n*n ...
- Codeforces Round #624 (Div. 3) F. Moving Points 题解
第一次写博客 ,请多指教! 翻了翻前面的题解发现都是用树状数组来做,这里更新一个 线段树+离散化的做法: 其实这道题是没有必要用线段树的,树状数组就能够解决.但是个人感觉把线段树用熟了会比树状数组更有 ...
- LuoguP5139 z小f的函数 题解
Content 给定 \(T\) 个二次函数 \(y=ax^2+bx+c\),有若干次操作,有一个操作编号 \(p\),保证仅为以下这五种: 操作 \(1\):给定 \(k\),将函数图像向上移动 \ ...
- HDU X mod f(x)(题解注释)
X mod f(x) Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total ...
- 2018年第九届蓝桥杯【C++省赛B组】B、C、D、F、G 题解
B. 明码 #STL 题意 把每个字节转为2进制表示,1表示墨迹,0表示底色.每行2个字节,一共16行,布局是: 第1字节,第2字节 第3字节,第4字节 .... 第31字节, 第32字节 给定一段由 ...
- F. Mattress Run 题解
F. Mattress Run 挺好的一道题,对于DP的本质的理解有很大的帮助. 首先要想到的就是将这个拆成两个题,一个dp光求获得足够的夜晚的最小代价,一个dp光求获得足够的停留的最小代价. 显然由 ...
- 合肥学院ACM集训队第一届暑假友谊赛 B FYZ的求婚之旅 D 计算机科学家 F 智慧码 题解
比赛网址:https://ac.nowcoder.com/acm/contest/994#question B FYZ的求婚之旅 思路: 然后用快速幂即可. 细节见代码: #include <i ...
- 一本通1166 求f(x,n)
[题目描述] 已知 计算x=4.2,n=1以及x=2.5,n=15时f的值. [输入] 输入x和n. [输出] 函数值,保留两位小数. [输入样例] 4.2 10 [输出样例] 3.68 1.看见这种 ...
随机推荐
- layui的入门使用
1.如果使用单独的layui插件的话需要先引入jquery的插件,官方建议1.8+的版本. 2.引入后就能根据规则正常使用了.
- vite的项目,使用 rollup 打包的方法
官网资料 构建生产版本--库模式 https://cn.vitejs.dev/guide/build.html#library-mode 详细设置 https://cn.vitejs.dev/conf ...
- Java开发最实用最好用的11个技术网站
作为一个Java开发者,学习最新技术和关注行业内容是你不断提升自我的有效手段.因此,我会特别关注一些质量高口碑好的Java技术网站,在这里分享给大家. 1.Stackoverflow Stackove ...
- Codeforces 1392I - Kevin and Grid(平面图的欧拉定理+FFT)
Codeforces 题面传送门 & 洛谷题面传送门 模拟赛考到一道和这题有点类似的题就来补了 神仙 GLBR I %%%%%%%%%%%%%%%%%%%% 不过感觉见过类似的题目之后就比较套 ...
- canvas 基本介绍
# canvas 基本功能介绍 - canvas 能做什么 1. 绘制简单图形线条 2. 裁剪图片 - 开始绘制画布 新建html文档添加 canvas标签 ```html <div style ...
- 有关[Http持久连接]的一切,撕碎给你看
上文中我的结论是: HTTP Keep-Alive 是在应用层对TCP连接进行滑动续约复用, 如果客户端/服务器稳定续约,就成了名副其实的长连接. 目前所有的Http网络库都默认开启了HTTP Kee ...
- excel-合并多个Excel文件--VBA合并当前目录下所有Excel工作簿中的所有工作表
在网上找EXCEL多文件合并的方法,思路: 一.Linux 或者window+cmder,直接用命令行cat合并EXCEL文件,但是,需要安装辅助东西才能直接处理(也许也不可以,但是,可以用文件格式转 ...
- 再聊我们自研的那些Devops工具
两年前我写了篇文章『我们自研的那些Devops工具』介绍了我们自研的一些DevOps工具系统,两年过去了这些工具究竟还有没有在发光发热,又有哪些新的变化呢,我将通过这篇文章来回顾一下这两年的发展与变化 ...
- hadoop运行jar包报错
执行命令:[root@hadoop102 mapreduce]# hadoop jar mapreduce2_maven.jar Filter 错误信息:Exception in thread &qu ...
- centOS7.4 , gcc4.8.5装cgdb
从github上clone最新releast后进入文件夹 ./configure –prefix=/usr/local CXXFLAGS=-std=c++11 make&make instal ...