题目链接

1046: [HAOI2007]上升序列

Time Limit: 10 Sec  Memory Limit: 162 MB
Submit: 3620  Solved: 1236
[Submit][Status][Discuss]

Description

对于一个给定的S={a1,a2,a3,…,an},若有P={ax1,ax2,ax3,…,axm},满足(x1 < x2 < … < xm)且( ax1 < ax2 < … < axm)。那么就称P为S的一个上升序列。如果有多个P满足条件,那么我们想求字典序最小的那个。任务给出S序列,给出若干询问。对于第i个询问,求出长度为Li的上升序列,如有多个,求出字典序最小的那个(即首先x1最小,如果不唯一,再看x2最小……),如果不存在长度为Li的上升序列,则打印Impossible.

Input

第一行一个N,表示序列一共有N个元素第二行N个数,为a1,a2,…,an 第三行一个M,表示询问次数。下面接M行每行一个数L,表示要询问长度为L的上升序列。

Output

对于每个询问,如果对应的序列存在,则输出,否则打印Impossible.

Sample Input

6
3 4 1 2 3 6
3
6
4
5

Sample Output

Impossible
1 2 3 6
Impossible

HINT

数据范围

N<=10000

M<=1000

 
我们不能知道从某个位置开始的最长上升序列的长度, 但是我们可以知道以某个位置结束的最长下降序列的长度, 所以倒过来求一下最长下降子序列的长度就可以了。
这里的字典序并不是开头的数字的大小而是开头数字的坐标大小。
#include <iostream>
#include <vector>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <map>
#include <set>
#include <string>
#include <queue>
#include <stack>
#include <bitset>
using namespace std;
#define pb(x) push_back(x)
#define ll long long
#define mk(x, y) make_pair(x, y)
#define lson l, m, rt<<1
#define mem(a) memset(a, 0, sizeof(a))
#define rson m+1, r, rt<<1|1
#define mem1(a) memset(a, -1, sizeof(a))
#define mem2(a) memset(a, 0x3f, sizeof(a))
#define rep(i, n, a) for(int i = a; i<n; i++)
#define fi first
#define se second
typedef pair<int, int> pll;
const double PI = acos(-1.0);
const double eps = 1e-;
const int mod = 1e9+;
const int inf = ;
const int dir[][] = { {-, }, {, }, {, -}, {, } };
int a[], dp[], stk[];
int main()
{
int n, m, len = ;
cin>>n;
for(int i = n; i>=; i--) {
scanf("%d", &a[i]);
dp[i] = ;
}
for(int i = ; i<=n; i++) {
for(int j = ; j<i; j++) {
if(a[j]>a[i]) {
dp[i] = max(dp[i], dp[j]+);
}
}
len = max(len, dp[i]);
}
reverse(a+, a+n+);
reverse(dp+, dp++n);
int x;
cin>>x;
while(x--) {
scanf("%d", &m);
if(len < m) {
puts("Impossible");
continue;
}
int p = , last = -inf;
for(int i = ; i<=n&&m!=; i++)
if(dp[i]>=m&&a[i]>last) {
stk[++p] = i;
m--;
last = a[i];
}
for(int i = ; i<p; i++)
printf("%d ", a[stk[i]]);
printf("%d\n",a[stk[p]]);
}
return ;
}

bzoj 1046 : [HAOI2007]上升序列 dp的更多相关文章

  1. BZOJ 1046: [HAOI2007]上升序列 LIS -dp

    1046: [HAOI2007]上升序列 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3438  Solved: 1171[Submit][Stat ...

  2. BZOJ 1046: [HAOI2007]上升序列【贪心+二分状态+dp+递归】

    1046: [HAOI2007]上升序列 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4987  Solved: 1732[Submit][Stat ...

  3. 1046: [HAOI2007]上升序列(dp)

    1046: [HAOI2007]上升序列 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4999  Solved: 1738[Submit][Stat ...

  4. Bzoj 1046: [HAOI2007]上升序列 二分,递推

    1046: [HAOI2007]上升序列 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3671  Solved: 1255[Submit][Stat ...

  5. BZOJ 1046: [HAOI2007]上升序列(LIS)

    题目挺坑的..但是不难.先反向做一次最长下降子序列.然后得到了d(i),以i为起点的最长上升子序列,接下来贪心,得到字典序最小. ----------------------------------- ...

  6. [BZOJ 1046] [HAOI2007] 上升序列 【DP】

    题目链接:BZOJ - 1046 题目分析 先倒着做最长下降子序列,求出 f[i],即以 i 为起点向后的最长上升子序列长度. 注意题目要求的是 xi 的字典序最小,不是数值! 如果输入的 l 大于最 ...

  7. bzoj 1046: [HAOI2007]上升序列【dp+二分】

    先从后到前做一个最长下降子序列的dp,记录f[i],我这里用的是二分(其实树状数组比较显然) 然后对于询问,超出最长上升子序列的直接输出:否则从前到后扫,f[i]>=x&&a[i ...

  8. bzoj 1046: [HAOI2007]上升序列

    Description 对于一个给定的S={a1,a2,a3,…,an},若有P={ax1,ax2,ax3,…,axm},满足(x1 < x2 < … < xm)且( ax1 < ...

  9. BZOJ 1046 [HAOI2007]上升序列(LIS + 贪心)

    题意: m次询问,问下标最小字典序的长度为x的LIS是什么 n<=10000, m<=1000 思路: 先nlogn求出f[i]为以a[i]开头的LIS长度 然后贪心即可,复杂度nm 我们 ...

随机推荐

  1. hdu3038 How Many Answers Are Wrong【基础种类并查集】

    转载请注明出处,谢谢:http://www.cnblogs.com/KirisameMarisa/p/4298091.html   ---by 墨染之樱花 题目链接:http://acm.hdu.ed ...

  2. 算法精解(C语言描述) 第4章 读书笔记

    第4章 算法分析 1.最坏情况分析 评判算法性能的三种情况:最佳情况.平均情况.最坏情况. 为何要做最坏情况分析: 2.O表示法 需关注当算法处理的数据量变得无穷大时,算法性能将趋近一个什么样的值.一 ...

  3. JavaScript引用类型之Array数组的拼接方法-concat()和截取方法-slice()

    1.concat()   基于当前数组中的所有项创建一个新数组(也就是副本),然后将接收到的参数添加到副本的末尾,最后返回新构建的数组.也就是说,concat()在向数组中追加元素时,不会改变原有数组 ...

  4. 日期选择器——java

    转载:http://zgdeng.iteye.com/blog/1405650 代码如下: import java.awt.BasicStroke; import java.awt.BorderLay ...

  5. HTML5的绘图的支持

    一.简单介绍canvas元素 <canvas.../>是HTML5新增的一个元素,该元素用于绘制图形.实际上<canvas../>只是相当于一张画布. 它除了可以指定通用属性外 ...

  6. AlarmManager类的应用(实现闹钟功能)

    1.AlarmManager,顾名思义,就是“提醒”,是Android中常用的一种系统级别的提示服务,可以实现从指定时间开始,以一个固定的间隔时间执行某项操作,所以常常与广播(Broadcast)连用 ...

  7. Aho - Corasick string matching algorithm

    Aho - Corasick string matching algorithm 俗称:多模式匹配算法,它是对 Knuth - Morris - pratt algorithm (单模式匹配算法) 形 ...

  8. Material Design 开发利器:Android Design Support Library 介绍

    转自:https://blog.leancloud.cn/3306/ Android 5.0 Lollipop 是迄今为止最重大的一次发布,很大程度上是因为 material design —— 这是 ...

  9. 大家帮我测试下,IOCP服务端和客户端交互

    大家帮我测试下,主要是对游戏服务端的测试,这个客户端C#版本,需要NET4.0支持

  10. 十大最值得注意的MySQL变量

    MySQL数据库中的变量非常多,下文为您整理出了十大最值得注意的MySQL变量,希望对您学习MySQL数据库能够有一些帮助. AD: MySQL变量很多,其中有一些MySQL变量非常值得我们注意,下面 ...