uoj192 【UR #14】最强跳蚤
和成爷达成一致,被卡随机的话就是过了
考虑一个完全平方数的所有质因子次幂一定是偶数,于是对于每一条边我们都只保留其出现次数为奇数的质因子
注意到有一个点的\(w\leq 80\),于是考虑状压质因子,对于第\(i\)个质数,我们定义其权值为\(2^{i-1}\),这样我们就把每一条边的权值都变成了一个二进制数,现在只需要求有多少条路径的异或和为\(0\)即可,显然求一下每个点到根路径异或和,开个桶随便搞搞就完事了
对于\(w\leq 10^8\),我们不能再状压成二进制了,考虑对每个质因子设置一个\(\rm unsigned\ long \ long\)范围内的权值,一条边的权值就是所有出现次数为奇数的质因子权值的异或和,还是求有多少条路径异或为\(0\)
之后就被卡了,各种换随机种子也只有90
代码
#include <bits/stdc++.h>
#define re register
#define LL long long
#define max(a, b) ((a) > (b) ? (a) : (b))
#define ull unsigned long long
inline int read() {
char c = getchar();
int x = 0;
while (c < '0' || c > '9') c = getchar();
while (c >= '0' && c <= '9') x = (x << 3) + (x << 1) + c - 48, c = getchar();
return x;
}
const int maxn = 1e5 + 5;
struct E {
int v, nxt;
ull w;
} e[maxn << 1];
int n, num, T, f[10005], p[10005];
int head[maxn], xx[maxn], yy[maxn], ww[maxn];
ull w[10005], pre[maxn];
std::map<int, ull> ma;
std::map<ull, int> tax;
inline void add(int x, int y, ull w) {
e[++num].v = y;
e[num].nxt = head[x];
head[x] = num;
e[num].w = w;
}
inline ull Rand() {
return (((ull)rand() % 32768ll) << 45ll) + (((ull)rand() % 32768ll) << 30ll) +
(((ull)rand() % 32768ll) << 15ll) + ((ull)rand() % 32768ll);
}
void dfs(int x, int fa) {
for (re int i = head[x]; i; i = e[i].nxt) {
if (e[i].v == fa)
continue;
pre[e[i].v] = pre[x] ^ e[i].w;
dfs(e[i].v, x);
}
}
int main() {
srand(19260817);
n = read();
for (re int i = 1; i < n; i++) xx[i] = read(), yy[i] = read(), ww[i] = read(), T = max(T, ww[i]);
T = std::ceil(std::sqrt(T));
for (re int i = 2; i <= T; i++) {
if (!f[i])
p[++p[0]] = i, w[p[0]] = Rand();
for (re int j = 1; j <= p[0] && p[j] * i <= T; ++j) {
f[p[j] * i] = 1;
if (i % p[j] == 0)
break;
}
}
for (re int i = 1; i < n; i++) {
int now = 0;
for (re int t = 0, j = 1; j <= p[0]; ++j, t = 0) {
if (ww[i] % p[j])
continue;
while (ww[i] % p[j] == 0) ww[i] /= p[j], t ^= 1;
now ^= (t * w[j]);
if (ww[i] == 1)
break;
}
if (ww[i] != 1) {
if (!ma[ww[i]])
ma[ww[i]] = Rand();
now ^= ma[ww[i]];
}
add(xx[i], yy[i], now), add(yy[i], xx[i], now);
}
dfs(1, 0);
LL ans = 0;
for (re int i = 1; i <= n; i++) ans += tax[pre[i]], tax[pre[i]]++;
printf("%lld\n", 2ll * ans);
return 0;
}
uoj192 【UR #14】最强跳蚤的更多相关文章
- 【uoj#192】[UR #14]最强跳蚤 Hash
题目描述 给定一棵 $n$ 个点的树,边有边权.求简单路径上的边的乘积为完全平方数的点对 $(x,y)\ ,\ x\ne y$ 的数目. 题解 Hash 一个数是完全平方数,当且仅当每个质因子出现次数 ...
- UOJ #192 【UR #14】 最强跳蚤
题目链接:最强跳蚤 这道题本来不想写博客的--但是鉴于自己犯了低级错误,还是写篇博客记载一下. 一开始我的想法和题解里面的算法而比较类似,也是先分解质因数,然后用质因子是否出现偶数次来判断当前这个数是 ...
- (GDOI2018模拟九)【UOJ#192】【UR#14】最强跳蚤
(开头先Orz myh) 原题目: 在人类和跳蚤的战争初期,人们凭借着地理优势占据了上风——即使是最强壮的跳蚤,也无法一下越过那一堵坚固的城墙. 在经历了惨痛的牺牲后,跳蚤国王意识到再这样下去,跳蚤国 ...
- UOJ#192. 【UR #14】最强跳蚤
题目链接 http://uoj.ac/problem/192 暑期课第二天 树上问题进阶 具体内容看笔记博客吧 题意 n个节点的树T 边有边权w 求满足(u, v)上所有边权乘积为完全平方数的路径有多 ...
- UOJ192 最强跳蚤
题目链接 problem 给出一个n个点带边权的树,问有多少对\((u,v)\)满足\(u\)到\(v\)路径上边权的乘积为完全平方数. \(n\le 10^5,w\le 10^8\) solutio ...
- CSDN专家吐槽实录
今天打开CSDN发现界面上的几个图标发生了变化,一个小小的变化,却引起了诸多CSDN专家对CSDN社区未来发展的思考,我特意从群里讲对话黏贴出来,希望各位能给予积极评价和建议. 你已经是群成员了,和大 ...
- 红黑树插入操作---以JDK 源码为例
红黑树遵循的条件: 1.根节点为黑色. 2.外部节点(叶子节点)为黑色. 3.红色节点的孩子节点为黑色.(由此,红色节点的父节点也必为黑色) 4.从根节点到任一外部节点的路径上,黑节点的数量相同. 节 ...
- 【胡策篇】题解 (UOJ 192 + CF938G + SPOJ DIVCNT2)
和泉纱雾与烟花大会 题目来源: UOJ 192 最强跳蚤 (只改了数据范围) 官方题解: 在这里哦~(说的很详细了 我都没啥好说的了) 题目大意: 求树上各边权乘积是完全平方数的路径数量. 这种从\( ...
- 【UER #1】[UOJ#12]猜数 [UOJ#13]跳蚤OS [UOJ#14]DZY Loves Graph
[UOJ#12][UER #1]猜数 试题描述 这一天,小Y.小D.小C正在愉快地玩耍. 小Y是个数学家,他一拍脑袋冒出了一个神奇的完全平方数 n. 小D是个机灵鬼,很快从小Y嘴里套出了 n的值.然后 ...
随机推荐
- 关于提BUG的一点思考以及工作中总结的规范
在测试的工作中,提BUG是日常工作. 以前自己为了省事,省时,仅仅是截图,在图片上注明一下问题,就放到BUG库中了. 现在发现这样会造成开发的时间的浪费,增加了沟通成本. 对于BUG,当发现了异常时, ...
- 正则表达式替换字符串中的html标签
正则表达式替换字符串中的html标签 ··· var newStr = str.replace(/<[^>]+>/g, ''); ···
- HTML-参考手册: HTTP 方法:GET 对比 POST
ylbtech-HTML-参考手册: HTTP 方法:GET 对比 POST 1.返回顶部 1. HTTP 方法:GET 对比 POST 两种最常用的 HTTP 方法是:GET 和 POST. 什么是 ...
- Python中使用item()方法遍历字典的例子
Python中使用item()方法遍历字典的例子 这篇文章主要介绍了Python中使用item()方法遍历字典的例子,for...in这种是Python中最常用的遍历字典的方法了,需要的朋友可以参考下 ...
- java.io.IOException: Could not find resource SqlMapConfig.xml
java.io.IOException: Could not find resource SqlMapConfig.xml 创建mybatis工程时遇到的问题 问题的来源:当我们在项目中和src同级的 ...
- Flink 配置文件详解
前面文章我们已经知道 Flink 是什么东西了,安装好 Flink 后,我们再来看下安装路径下的配置文件吧. 安装目录下主要有 flink-conf.yaml 配置.日志的配置文件.zk 配置.Fli ...
- flex上下、左右居中
tip:1)flex是用于div布局用的,作用于一级子元素(父元素写样式,作用于子元素) 2)弹性盒模型 3)英文解释justify-content: 对齐内容(内容一般写在主轴上)align-ite ...
- swagger使用详解
1:认识Swagger Swagger 是一个规范和完整的框架,用于生成.描述.调用和可视化 RESTful 风格的 Web 服务.总体目标是使客户端和文件系统作为服务器以同样的速度来更新.文件的方法 ...
- Linux 网络 tcp C/S通信模型
C/S模型就是server 与 client 的模型 TCP服务器模型流程图 ...
- day01 python起源 介绍 解释器 变量 流程控制if
day01 python 一.python的起源 1.python简介 java 企业级应用, android, app c 操作系统, 做开发语言的, 游戏的内核 ...