正解:博弈论

解题报告:

传送门!

威佐夫博弈板子昂$QwQ$

关于这一类问题也有个结论,是说,先手必败的状态一定形如$(\left \lfloor i+\phi \right \rfloor,\left \lfloor i+\phi^{2} \right \rfloor)$,然后$\phi=\frac{\sqrt{5}+1}{2}$

证是不会证的了,但找到了一篇证明看这个趴$QAQ$

#include<bits/stdc++.h>
using namespace std;
#define il inline
#define gc getchar()
#define ri register int
#define rb register bool
#define rc register char
#define rp(i,x,y) for(ri i=x;i<=y;++i) const double phi=(sqrt()+)/; il int read()
{
rc ch=gc;ri x=;rb y=;
while(ch!='-' && (ch>'' || ch<''))ch=gc;
if(ch=='-')ch=gc,y=;
while(ch>='' && ch<='')x=(x<<)+(x<<)+(ch^''),ch=gc;
return y?x:-x;
}
int main()
{
ri a=read(),b=read();if(a>b)swap(a,b);ri tmp=(b-a)*phi;
if(tmp==a)printf("0\n");else printf("1\n");
return ;
}

洛谷$P$2252 取石子游戏 博弈论的更多相关文章

  1. POJ.1067 取石子游戏 (博弈论 威佐夫博弈)

    POJ.1067 取石子游戏 (博弈论 威佐夫博弈) 题意分析 简单的威佐夫博弈 博弈论快速入门 代码总览 #include <cstdio> #include <cmath> ...

  2. HDU.2516 取石子游戏 (博弈论 斐波那契博弈)

    HDU.2516 取石子游戏 (博弈论 斐波那契博弈) 题意分析 简单的斐波那契博弈 博弈论快速入门 代码总览 #include <bits/stdc++.h> #define nmax ...

  3. 洛谷 P2252 [SHOI2002]取石子游戏|【模板】威佐夫博弈

    链接: P2252 [SHOI2002]取石子游戏|[模板]威佐夫博弈 前言: 第一眼大水题,第二眼努力思考,第 N 眼我是大水逼. 题意: 不看题目标题都应该能看出来是取石子类的博弈论. 有两堆石子 ...

  4. HDU.2516.取石子游戏(博弈论 Fibonacci Nim)

    题目链接 \(Description\) 1堆石子有n个.两人轮流取.先取者第1次可以取任意多个,但不能全部取完.以后每次取的石子数不能超过上次取子数的2倍,取完者胜.问谁能赢. \(Solution ...

  5. hdu 2516 取石子游戏 博弈论

    很显然的nim游戏的变形,很好找规律 先手败:2,3,5,8,13…… 其他先手胜.即满足菲波拉数列. 代码如下: #include<iostream> #include<stdio ...

  6. 【洛谷P2252】取石子游戏

    题面 题解 威佐夫博弈 代码 #include<cstdio> #include<algorithm> #include<cmath> #define RG reg ...

  7. 【洛谷2252&HDU1527】取石子游戏(博弈论)

    题面 HDU1527 取石子游戏 洛谷2252 取石子游戏 题解 裸的威佐夫博弈 #include<iostream> #include<cmath> using namesp ...

  8. 【BZOJ1413】[ZJOI2009]取石子游戏(博弈论,动态规划)

    [BZOJ1413][ZJOI2009]取石子游戏(博弈论,动态规划) 题面 BZOJ 洛谷 题解 神仙题.jpg.\(ZJOI\)是真的神仙. 发现\(SG\)函数等东西完全找不到规律,无奈只能翻题 ...

  9. 洛谷——P2252 取石子游戏

    P2252 取石子游戏 有两堆石子,数量任意,可以不同.游戏开始由两个人轮流取石子.游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子:二是可以在两堆中同时取走相同数量的石子.最后 ...

随机推荐

  1. 2016 年度开源中国新增开源软件排行榜 TOP 100

    2016 年度开源中国新增开源软件排行榜 TOP 100 2016 年度开源中国新增开源软件排行榜 TOP 100 新鲜出炉!本榜单根据 2016 年开源中国新收录的 3030 款软件的关注度和活跃度 ...

  2. 在SQL中number(16,5)中的16和5 及number( 5,-2)中的5和-2是什么意思?

    在SQL中number(16,5)中的16和5 及number( 5,-2)中的5和-2是什么意思? 2018-06-04 19:23:24 xiaonan_IT 阅读数 3672   版权声明:本文 ...

  3. wpf 登录时显示状态动态图

    下面的示例演示了如何在登录过程时,界面上显示状态图标,登录完成后隐藏图标: public partial class MainWindow : Window { public MainWindow() ...

  4. Python--day23--初识面向对象复习

    面向对象编程是大程序编程思想:

  5. 2018-8-10-win10-sdk-是否向下兼容

    title author date CreateTime categories win10 sdk 是否向下兼容 lindexi 2018-08-10 19:16:53 +0800 2018-2-13 ...

  6. 3-7 彻底搞清楚unicode和utf8编码

  7. Codeforces Round #178 (Div. 2)

    A. Shaass and Oskols 模拟. B. Shaass and Bookshelf 二分厚度. 对于厚度相同的书本,宽度竖着放显然更优. 宽度只有两种,所以枚举其中一种的个数,另一种的个 ...

  8. Spring Cloud探路(一) Erueka服务器的建立

    组件名:Netflix Eureka  作用:支撑微服务的自注册.自发现,提供负载均衡能力 开发环境使用IDEA 1.新建Eureka Server,新建maven项目,配置pom.xml <p ...

  9. 21个项目玩转深度学习:基于TensorFlow的实践详解06—人脸检测和识别——项目集锦

    摘自:https://github.com/azuredsky/mtcnn-2 mtcnn - Multi-task CNN library language dependencies comment ...

  10. P1086 最大素数积

    题目描述 我们称一个整数 \(x\) 是"素数积"当且仅当 \(x = a \times b\) 并且 \(a\) 和 \(b\) 都是素数. 现在告诉你一个数 \(N(1 \le ...