正解:最短路+优化连边

解题报告:

传送门$w$

这种优化连边啥的真的好妙噢$QwQ$

首先显然离散化下不说$QwQ$.然后对所有横坐标纵坐标分别建点,相邻两横坐标点相连,边权为离散前的坐标差.纵坐标同理.

然后对给定的点,连向对应的横纵坐标,边权为0,跑个最短路就完事$QwQ$

正确性显然?不说了$QwQ$

#include<bits/stdc++.h>
using namespace std;
#define il inline
#define lf double
#define gc getchar()
#define mp make_pair
#define int long long
#define P pair<int,int>
#define t(i) edge[i].to
#define w(i) edge[i].wei
#define ri register int
#define rc register char
#define rb register bool
#define lowbit(x) (x&(-x))
#define rp(i,x,y) for(ri i=x;i<=y;++i)
#define my(i,x,y) for(ri i=x;i>=y;--i)
#define e(i,x) for(ri i=head[x];i;i=edge[i].nxt)
#define lbh(x) lower_bound(sth+1,sth+1+h_cnt,x)-sth
#define lbl(x) lower_bound(stl+1,stl+1+l_cnt,x)-stl const int N=5e6+10;
int n,h_cnt,sth[N],l_cnt,stl[N],ed_cnt,head[N],S,T,dis[N],vis[N];
struct node{int x,y;}nod[N];
struct ed{int to,nxt,wei;}edge[N<<2];
priority_queue< P,vector<P>,greater<P> >Q; il int read()
{
rc ch=gc;ri x=0;rb y=1;
while(ch!='-' && (ch>'9' || ch<'0'))ch=gc;
if(ch=='-')ch=gc,y=0;
while(ch>='0' && ch<='9')x=(x<<1)+(x<<3)+(ch^'0'),ch=gc;
return y?x:-x;
}
il void ad(ri x,ri y,ri z){/*printf("%d %d %d\n",x,y,z);*/edge[++ed_cnt]=(ed){x,head[y],z};head[y]=ed_cnt;}
il void dij()
{
memset(dis,63,sizeof(dis));dis[S]=0;Q.push(mp(0,S));
while(!Q.empty())
{
ri nw=Q.top().second;Q.pop();if(vis[nw])continue;vis[nw]=1;
//printf("nw=%d dis=%d\n",nw,dis[nw]);
e(i,nw)if(dis[t(i)]>dis[nw]+w(i))dis[t(i)]=dis[nw]+w(i),Q.push(mp(dis[t(i)],t(i)));
}
} signed main()
{
//freopen("4152.in","r",stdin);freopen("4152.out","w",stdout);
n=read();rp(i,1,n)nod[i]=(node){sth[++h_cnt]=read(),stl[++l_cnt]=read()};
sort(sth+1,sth+1+h_cnt);h_cnt=unique(sth+1,sth+h_cnt+1)-sth-1;rp(i,1,n)nod[i].x=lbh(nod[i].x);
sort(stl+1,stl+1+l_cnt);l_cnt=unique(stl+1,stl+l_cnt+1)-stl-1;rp(i,1,n)nod[i].y=lbl(nod[i].y);
rp(i,2,h_cnt)ad(i,i-1,sth[i]-sth[i-1]),ad(i-1,i,sth[i]-sth[i-1]);
rp(i,2,l_cnt)ad(i+h_cnt,i-1+h_cnt,stl[i]-stl[i-1]),ad(i-1+h_cnt,i+h_cnt,stl[i]-stl[i-1]);
rp(i,1,n){ri t1=i+h_cnt+l_cnt,t2=nod[i].y+h_cnt;ad(t1,nod[i].x,0),ad(nod[i].x,t1,0),ad(t1,t2,0),ad(t2,t1,0);}
S=1+h_cnt+l_cnt;T=n+h_cnt+l_cnt;dij();printf("%lld\n",dis[T]);
return 0;
}

$bzoj4152\ The\ Captain$ 最短路的更多相关文章

  1. BZOJ4152 The Captain(dijkstra+巧妙建图)

    BZOJ4152 The Captain 题面很简洁: 给定平面上的n个点,定义(x1,y1)到(x2,y2)的费用为min(|x1-x2|,|y1-y2|),求从1号点走到n号点的最小费用. 很明显 ...

  2. 【BZOJ4152】[AMPPZ2014]The Captain 最短路

    [BZOJ4152][AMPPZ2014]The Captain Description 给定平面上的n个点,定义(x1,y1)到(x2,y2)的费用为min(|x1-x2|,|y1-y2|),求从1 ...

  3. bzoj4152[AMPPZ2014]The Captain 最短路

    4152: [AMPPZ2014]The Captain Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 1517  Solved: 603[Submi ...

  4. BZOJ 4152: [AMPPZ2014]The Captain( 最短路 )

    先按x排序, 然后只有相邻节点的边才有用, 我们连起来, 再按y排序做相同操作...然后就dijkstra ---------------------------------------------- ...

  5. 『The Captain 最短路建图优化』

    The Captain(BZOJ 4152) Description 给定平面上的n个点,定义(x1,y1)到(x2,y2)的费用为min(|x1-x2|,|y1-y2|),求从1号点走到n号点的最小 ...

  6. bzoj4152 The Captain

    Description 给定平面上的n个点,定义(x1,y1)到(x2,y2)的费用为min(|x1-x2|,|y1-y2|),求从1号点走到n号点的最小费用. Input 第一行包含一个正整数n(2 ...

  7. bzoj4152 The Captain (dijkstra)

    做dijkstra,但只需要贪心地把每个点连到它左边.右边.上边.下面的第一个点就可以了 #include<bits/stdc++.h> #define pa pair<int,in ...

  8. [题解] [BZOJ4152] The Captain

    题面 题解 将所有点根据

  9. noip2017考前整理(未完)

    快考试了,把我以前写过的题回顾一下.Noip2007 树网的核:floyd,推出性质,暴力.Noip2008 笨小猴:模拟Noip2008 火柴棒等式:枚举Noip2008 传纸条:棋盘dpNoip2 ...

随机推荐

  1. Android Http实现文件的上传和下载

    最近做一个项目,其中涉及到文件的上传和下载功能,大家都知道,这个功能实现其实已经烂大街了,遂.直接从网上荡了一堆代码用,结果,发现网上的代码真是良莠不齐,不是写的不全面,就是有问题,于是自己重新整理了 ...

  2. RequestMapping中produces属性作用

    注解RequestMapping中produces属性可以设置返回数据的类型以及编码,可以是json或者xml: @RequestMapping(value="/xxx",prod ...

  3. ORACLE内部操作

    当执行查询时,ORACLE采用了内部的操作. 下表显示了几种重要的内部操作. ORACLE Clause 内部操作 ORDER BY SORT ORDER BY UNION UNION-ALL MIN ...

  4. redis 写入数据 越来越慢 是什么原因

    redis并不会因为key的增加而导致写入明显变慢,肯定是其他因素.如果redis开启了持久化,在进行持久化时,性能必然下降,可以使用config命令查看持久化设置了没有.另外考虑是否是内存不足,一般 ...

  5. [转]Netty实现原理浅析

    Netty是JBoss出品的高效的Java NIO开发框架,关于其使用,可参考我的另一篇文章netty使用初步.本文将主要分析Netty实现方面的东西,由于精力有限,本人并没有对其源码做了极细致的研 ...

  6. log4js的简单配置

    js记录日志工具log4js,参数请参考官网文档https://log4js-node.github.io/log4js-node/index.html const log4js = require( ...

  7. 2019-8-31-dotnet-core-黑科技·String.IndexOf-性能

    title author date CreateTime categories dotnet core 黑科技·String.IndexOf 性能 lindexi 2019-08-31 16:55:5 ...

  8. H3C ACL包过滤的局限性

  9. java一维数组的声明与初始化

    一维数组:可以理解为一列多行.类型相同的数据,其中每个数据被称为数组元素: 一维数组的声明方式: type varName[]; 或 type[] varName;(推荐) Eg:int age[]; ...

  10. vue echarts引用

    <template> <!--为echarts准备一个具备大小的容器dom--> <div id="main" style="width: ...