挺神仙的置换题

SP422 TRANSP2 - Transposing is Even More Fun

这个博客除了开始举例子别的都是对的:

https://blog.csdn.net/BraketBN/article/details/50668414

首先理解题意:

就是单纯的矩阵转置,一行一行存储。

(全部下标从0开始)

一个位置(i,j)在转置后会变成(j,i)

原来存储的位置是(下标从0开始):i*2^b+j

现在是:j*2^a+i

发现其实就是一个二进制数循环右移b位得到的

向要到的位置连边,会形成K个置换环

每个置换环内部换会len-1省一次

总共就是:2^(a+b)-K

关键是求K

问题转化为:

有2^(a+b)个元素

两个元素是等价类当且仅当A循环右移b位和B相等

求等价类的个数

分母枚举所有的置换

分子计算所有不动点的个数

画画图,发现,在(a+b)的环上,一次走b步,最后有gcd(a,b)个置换环,和一次走gcd(a,b)步是一样的

所以,可以这样写,然后反演:

摘自:https://blog.csdn.net/BraketBN/article/details/50668414

然后,2的次幂可以预处理,phi线性筛,d可以快速质因数分解,然后dfs枚举约数

n直接求逆元,复杂度就是O(因子个数*T)

代码:

#include<bits/stdc++.h>
#define reg register int
#define il inline
#define numb (ch^'0')
using namespace std;
typedef long long ll;
il void rd(int &x){
char ch;x=;bool fl=false;
while(!isdigit(ch=getchar()))(ch=='-')&&(fl=true);
for(x=numb;isdigit(ch=getchar());x=x*+numb);
(fl==true)&&(x=-x);
}
namespace Miracle{
const int mod=;
const int N=1e6+;
int vis[N],pri[N],phi[N],tot;
int mindiv[N];
int yin[],zhi[],cnt;
void sieve(){
phi[]=;
for(reg i=;i<=1e6;++i){
if(!vis[i]){
vis[i]=;
mindiv[i]=i;
pri[++tot]=i;
phi[i]=i-;
}
for(reg j=;j<=tot;++j){
if(pri[j]*i>1e6) break;
vis[pri[j]*i]=;
mindiv[i*pri[j]]=pri[j];
if(i%pri[j]==){
phi[i*pri[j]]=phi[i]*pri[j];
break;
}else{
phi[i*pri[j]]=phi[i]*phi[pri[j]];
}
}
}
}
ll ans;
int pw[N];
int g,n;
void dfs(int x,int fac){
if(x==cnt+){
ans=(ans+(ll)pw[fac*g]*phi[n/fac]%mod)%mod;
return;
}
dfs(x+,fac);
int tmp=yin[x];
for(reg i=;i<=zhi[x];++i){
dfs(x+,fac*tmp);
tmp=tmp*yin[x];
}
}
int gcd(int a,int b){
return b?gcd(b,a%b):a;
}
int qm(int x,int y){
int ret=;
while(y){
if(y&) ret=(ll)ret*x%mod;
x=(ll)x*x%mod;
y>>=;
}
return ret;
}
int main(){
int t,a,b;
sieve();
pw[]=;
for(reg i=;i<=1e6;++i) pw[i]=(ll)pw[i-]*%mod; rd(t);
while(t--){
rd(a);rd(b);
if(a==||b==){
puts("");continue;
}
g=gcd(a,b);
n=(a+b)/gcd(a,b);
// cout<<" n "<<n<<endl;
cnt=;
ans=; int tmp=n;
while(mindiv[tmp]){
yin[++cnt]=mindiv[tmp];
zhi[cnt]=;
while(mindiv[tmp]==yin[cnt]) tmp/=mindiv[tmp],++zhi[cnt];
}
dfs(,); ans=(ll)ans*qm(n,mod-)%mod;
ans=(qm(,a+b)-ans+mod)%mod;
printf("%lld\n",ans);
}
return ;
} }
signed main(){
Miracle::main();
return ;
} /*
Author: *Miracle*
Date: 2019/2/18 11:31:26
*/

总结:
一个置换思想套置换本身的好题

反演还过来凑凑热闹

SP422 TRANSP2 - Transposing is Even More Fun——置换群+反演的更多相关文章

  1. SPOJ 422 Transposing is Even More Fun(polay计数)

    题目链接:http://www.spoj.com/problems/TRANSP2/ 题意: 思路:不妨设a=1,b=2, 我们发现(001,010,100)组成一个置换,(011,110,101)组 ...

  2. poj1026 Cipher ——置换群

    link:http://poj.org/problem?id=1026 其实这道题目和poj2369这道题目一样. 都是基础的置换群题目.把那道题目理解了,这道题就没问题了. 不过我的方法貌似比较挫, ...

  3. poj2369 Permutations ——置换群

    link:http://poj.org/problem?id=2369 置换群,最简单的那种. 找所有数字循环节的最小公倍数. /* ID: zypz4571 LANG: C++ TASK: perm ...

  4. 组合数学 - 置换群的幂运算 --- poj CARDS (洗牌机)

    CARDS Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 1448   Accepted: 773 Description ...

  5. [wikioi 2845]排序的代价(置换群)

    有一列数,要对其进行排序(升序).排序只能通过交换来实现.每次交换,可以选择这列数中的任意二个,交换他们的位置,并且交换的代价为二个数的和.排序的总代价是排序过程中所有交换代价之和.先要求计算,对于任 ...

  6. POJ 3270 Cow Sorting(置换群)

    题目链接 题意 : N头牛,每个牛的坏脾气都有一个值,每个值都不相同,把这个值按照从小到大排序,如果两个值交换,那么会花掉这两个值之和的时间,让你花最少的时间将每个值从小到大排好序,求最小的总时间. ...

  7. POJ 1026 Cipher(置换群)

    题目链接 题意 :由n个数字组成的密钥,每个数字都不相同,都在1-n之间,有一份长度小于等于n的信息,要求将信息放到密钥下边,一一对应,信息不足n的时候补空格,然后将位置重新排列,将此过程重复k次,求 ...

  8. poj 1026(置换群)

    题意:给你一个变换规则,和一个字符串,问经过k次变换后得到的字符串. 思路:开始的时候试图去找它的整个周期,谁知道周期太大了,各种RE,后来在得知此题需要用置换群来优化,第一次接触置换群学习了下! 代 ...

  9. 【SPOJ】Transposing is even more fun!

    题意: 给出a.b 表示按先行后列的方式储存矩阵 现在要将其转置 可以交换两个点的位置 求最小操作次数 题解: 储存可以将其视为拉成一条链 设a=5.b=2 则在链上坐标用2^***(a,b)表示为( ...

随机推荐

  1. 20155306 白皎 0day漏洞——漏洞利用原理之DEP

    20155306 白皎 0day漏洞--漏洞利用原理之DEP 一.DEP机制的保护原理 1.为什么出现DEP? 溢出攻击的根源在于现代计算机对数据和代码没有明确区分这一先天缺陷,就目前来看重新去设计计 ...

  2. AngularJS+bootstrap-switch 实现开关控件

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  3. 【HNOI2016】网络

    题面 题解 考虑整体二分. 定义整体二分函数solve(l, r, ql, qr)表示操作权值在\([l, r]\)中,对\([ql, qr]\)的询问进行二分. 这样的话check就会很简单,先按照 ...

  4. ubuntu安装微信客户端

    安装linux微信: apt-get install git git clone https://github.com/geeeeeeeeek/electronic-wechat.git cd ele ...

  5. ubuntu下安装搜狗输入法

    1.如果系统中未安装依赖fcitx,libssh2-1,或者依赖fcitx,libssh2-1的版本低的话,则需提前安装或者升级,否则安装输入法时会出错 安装命令 sudo apt-get insta ...

  6. vector 去重

    1.使用unique函数: sort(v.begin(),v.end()); v.erase(unique(v.begin(), v.end()), v.end()); //unique()函数将重复 ...

  7. log4j配置简要说明

    ################################################################################ #①配置根Logger,其语法为: # ...

  8. Win7 64位操作系统连接HP 1010打印机完美解决方案

    工作的第一天就遇到问题,新电脑无法连接老式的HP1010打印机,64位Windows7系统无法连接32位XP网络共享打印机,而32位WIN7就可以. 这里分享个简单的解决方法:        先去下载 ...

  9. 前端开发工具icestar

    前端开发工具icestar 最近忙里偷闲,把之前的mock工具进行了全面的重构,最大的改变就是换了个名称icestar,icestar意思就是"爱死他",首先他的预想并不只是替代m ...

  10. Git 命令简单罗列

    源教程出自 廖雪峰的官方网站 https://www.liaoxuefeng.com/wiki/0013739516305929606dd18361248578c67b8067c8c017b000 整 ...