上一篇总结了索引查找,这一篇要总结的是二叉排序树(Binary Sort Tree),又称为二叉查找树(Binary Search Tree) ,即BSTree。

构造一棵二叉排序树的目的,其实并不是为了排序,而是为了提高查找和插入删除的效率。

什么是二叉排序树呢?二叉排序树具有以下几个特点。

(1)若根节点有左子树,则左子树的所有节点都比根节点小。

(2)若根节点有右子树,则右子树的所有节点都比根节点大。

(3)根节点的左,右子树也分别是二叉排序树。

1、二叉排序树的图示

下面是二叉排序树的图示,通过它可以加深对二叉排序树的理解。

2、二叉排序树常见的操作及思路

下面是二叉排序树常见的操作及思路。

2-1、插入节点

思路:比如我们要插入数字20到这棵二叉排序树中。那么步骤如下:

(1)首先将20与根节点进行比较,发现比根节点小,所以继续与根节点的左子树30比较。

(2)发现20比30也要小,所以继续与30的左子树10进行比较。

(3)发现20比10要大,所以就将20插入到10的右子树中。

此时的二叉排序树如下图:

2-2、查找节点

比如我们要查找节点10,那么思路如下:

(1)还是一样,首先将10与根节点50进行比较,发现比根节点要小,所以继续与根节点的左子树30进行比较。

(2)发现10比左子树30要小,所以继续与30的左子树10进行比较。

(3)发现两值相等,即查找成功,返回10的位置。

2-3、删除节点

删除节点的情况相对复杂,主要分为以下三种情形:

(1)删除的是叶节点(即没有孩子节点的)。比如20,删除它不会破坏原来树的结构,最简单。如图所示。

(2)删除的是单孩子节点。比如90,删除它后需要将它的孩子节点与自己的父节点相连。情形比第一种复杂一些。

(3)删除的是有左右孩子的节点。比如根节点50

这里有一个问题就是删除它后,谁将作为根节点?利用二叉树的中序遍历,就是右节点的左子树的最左孩子

3、代码

有了思路之后,下面就开始写代码来实现这些功能。

BSTreeNode.java

public class BSTreeNode {
public int data;
public BSTreeNode left;
public BSTreeNode right; public BSTreeNode(int data) {
this.data = data;
}
}

BSTreeOperate.java

/**
* 二叉排序树的常见操作
*/
public class BSTreeOperate { // 树的根节点
public BSTreeNode root;
// 记录树的节点个数
public int size; /**
* 创建二叉排序树
*
* @param list
* @return
*/
public BSTreeNode create(int[] list) { for (int i = 0; i < list.length; i++) {
insert(list[i]);
}
return root;
} /**
* 插入一个值为data的节点
*
* @param data
*/
public void insert(int data) {
insert(new BSTreeNode(data));
} /**
* 插入一个节点
*
* @param bsTreeNode
*/
public void insert(BSTreeNode bsTreeNode) {
if (root == null) {
root = bsTreeNode;
size++;
return;
}
BSTreeNode current = root;
while (true) {
if (bsTreeNode.data <= current.data) {
// 如果插入节点的值小于当前节点的值,说明应该插入到当前节点左子树,而此时如果左子树为空,就直接设置当前节点的左子树为插入节点。
if (current.left == null) {
current.left = bsTreeNode;
size++;
return;
}
current = current.left;
} else {
// 如果插入节点的值大于当前节点的值,说明应该插入到当前节点右子树,而此时如果右子树为空,就直接设置当前节点的右子树为插入节点。
if (current.right == null) {
current.right = bsTreeNode;
size++;
return;
}
current = current.right;
}
}
} /**
* 中序遍历
*
* @param bsTreeNode
*/
public void LDR(BSTreeNode bsTreeNode) {
if (bsTreeNode != null) {
// 遍历左子树
LDR(bsTreeNode.left);
// 输出节点数据
System.out.print(bsTreeNode.data + " ");
// 遍历右子树
LDR(bsTreeNode.right);
}
} /**
* 查找节点
*/
public boolean search(BSTreeNode bsTreeNode, int key) {
// 遍历完没有找到,查找失败
if (bsTreeNode == null) {
return false;
}
// 要查找的元素为当前节点,查找成功
if (key == bsTreeNode.data) {
return true;
}
// 继续去当前节点的左子树中查找,否则去当前节点的右子树中查找
if (key < bsTreeNode.data) {
return search(bsTreeNode.left, key);
} else {
return search(bsTreeNode.right, key);
}
}
}

BSTreeOperateTest.java

public class BSTreeOperateTest {
public static void main(String[] args) {
BSTreeOperate bsTreeOperate = new BSTreeOperate();
int[] list = new int[]{50, 30, 70, 10, 40, 90, 80};
System.out.println("*********创建二叉排序树*********");
BSTreeNode bsTreeNode = bsTreeOperate.create(list);
System.out.println("中序遍历原始的数据:");
bsTreeOperate.LDR(bsTreeNode);
System.out.println("");
System.out.println(""); System.out.println("********查找节点*******");
System.out.println("元素20是否在树中:" + bsTreeOperate.search(bsTreeNode, 20));
System.out.println(""); System.out.println("********插入节点*******");
System.out.println("将元素20插入到树中");
bsTreeOperate.insert(20);
System.out.println("中序遍历:");
bsTreeOperate.LDR(bsTreeNode);
System.out.println("");
System.out.println(""); System.out.println("********查找节点*******");
System.out.println("元素20是否在树中:" + bsTreeOperate.search(bsTreeNode, 20));
System.out.println("");
}
}

运行结果:

欢迎转载,但请保留文章原始出处

本文地址:http://www.cnblogs.com/nnngu/p/8294714.html

算法8 五大查找之:二叉排序树(BSTree)的更多相关文章

  1. 算法08 五大查找之:二叉排序树(BSTree)

    上一篇总结了索引查找,这一篇要总结的是二叉排序树(Binary Sort Tree),又称为二叉查找树(Binary Search Tree) ,即BSTree. 构造一棵二叉排序树的目的,其实并不是 ...

  2. C++11写算法之二分查找

    同样的,二分查找很好理解,不多做解释,要注意二分查找的list必须是排好序的. 这里实现了两种二分查找的算法,一种递归一种非递归,看看代码应该差不多是秒懂.想试验两种算法,改变一下findFunc函数 ...

  3. Atitit.软件中见算法 程序设计五大种类算法

    Atitit.软件中见算法 程序设计五大种类算法 1. 算法的定义1 2. 算法的复杂度1 2.1. Algo cate2 3. 分治法2 4. 动态规划法2 5. 贪心算法3 6. 回溯法3 7. ...

  4. Java中的查找算法之顺序查找(Sequential Search)

    Java中的查找算法之顺序查找(Sequential Search) 神话丿小王子的博客主页 a) 原理:顺序查找就是按顺序从头到尾依次往下查找,找到数据,则提前结束查找,找不到便一直查找下去,直到数 ...

  5. 【算法】二分查找法&大O表示法

    二分查找 基本概念 二分查找是一种算法,其输入是一个有序的元素列表.如果要查找的元素包含在列表中,二分查找返回其位置:否则返回null. 使用二分查找时,每次都排除一半的数字 对于包含n个元素的列表, ...

  6. javascript数据结构与算法---二叉树(查找最小值、最大值、给定值)

    javascript数据结构与算法---二叉树(查找最小值.最大值.给定值) function Node(data,left,right) { this.data = data; this.left ...

  7. javascript数据结构与算法---检索算法(二分查找法、计算重复次数)

    javascript数据结构与算法---检索算法(二分查找法.计算重复次数) /*只需要查找元素是否存在数组,可以先将数组排序,再使用二分查找法*/ function qSort(arr){ if ( ...

  8. javascript数据结构与算法---检索算法(顺序查找、最大最小值、自组织查询)

    javascript数据结构与算法---检索算法(顺序查找.最大最小值.自组织查询) 一.顺序查找法 /* * 顺序查找法 * * 顺序查找法只要从列表的第一个元素开始循环,然后逐个与要查找的数据进行 ...

  9. C语言查找算法之顺序查找、二分查找(折半查找)

    C语言查找算法之顺序查找.二分查找(折半查找),最近考试要用到,网上也有很多例子,我觉得还是自己写的看得懂一些. 顺序查找 /*顺序查找 顺序查找是在一个已知无(或有序)序队列中找出与给定关键字相同的 ...

随机推荐

  1. 【cogs 597】【dp】交错匹配

    597. 交错匹配 ★☆ 输入文件:crossa.in 输出文件:crossa.out 简单对照 时间限制:1 s 内存限制:128 MB [问题描写叙述] 有两行自然数. UP[1..N] . DO ...

  2. Java中的包含义

    JAVA提供了强大的应用程序接口,既JAVA类库.他包含大量已经设计好的工具类,帮助程序员进行字符串处理.绘图.数学计算和网络应用等方面的工作.下面简单介绍JAVA核心类库中常用的组建包. 1.jav ...

  3. JavaScript导航树

    JS导航树 整理之前的小代码片段,放到博客,便于以后完善查看: 该JS导航树实际效果,[GSP+社区网站专题课程页面导航树]地址:http://gsp.inspur.com/knowledge/zhu ...

  4. JavaScript:inherits

    网上一查,肯定搜索到继承的文章真心不少.我这里就只说一下自己常用的方式: 通常 在编写一个类的做法是,在构造函数里声明字段,在prototype里指定方法. //step1: 在子类的构造器里法里实例 ...

  5. Android查缺补漏(View篇)--自定义 View 的基本流程

    View是Android很重要的一部分,常用的View有Button.TextView.EditView.ListView.GridView.各种layout等等,开发者通过对这些View的各种组合以 ...

  6. 使用Flink时遇到的问题(不断更新中)

    1.启动不起来 查看JobManager日志: WARN org.apache.flink.runtime.webmonitor.JobManagerRetriever - Failed to ret ...

  7. Axure学习笔记(一)

    Axture是一种快速制作原型的工具,在产品经理和体验设计师之中非常流行,不过现在产品经理比较难找,所以我只好上阵研究了一下.        经过几天的研究,看了小楼老师的一些视频,看了一些文档,做了 ...

  8. 前端MVC Vue2学习总结(三)——模板语法、过滤器、计算属性、观察者、Class 与 Style 绑定

    Vue.js 使用了基于 HTML 的模版语法,允许开发者声明式地将 DOM 绑定至底层 Vue 实例的数据.所有 Vue.js 的模板都是合法的 HTML ,所以能被遵循规范的浏览器和 HTML 解 ...

  9. ImportError: No module named 'request'

    使用系统自带的Python 2.7执行python时出现ImportError: No module named 'request'这样的报错,这是系统自带的Python没有requests库,这里可 ...

  10. Java 伙伴系统(模拟)

    参考:https://labrick.cc/2015/10/12/buddy-system-algorithm/ 代码过烂 不宜参考. output: [operating.entity.Heap@4 ...