Print numbers from 1 to the largest number with N digits by recursion.

Notice

It's pretty easy to do recursion like:

recursion(i) {
if i > largest number:
return
results.add(i)
recursion(i + 1)
}

however this cost a lot of recursion memory as the recursion depth maybe very large. Can you do it in another way to recursive with at most N depth?

Have you met this question in a real interview?

Yes
Example

Given N = 1, return [1,2,3,4,5,6,7,8,9].

Given N = 2, return [1,2,3,4,5,6,7,8,9,10,11,12,...,99].

分析:

我们可以按“层”打印,什么意思呢?

第一层 1 - 9  = 1 to (pow(10, 1) - pow(10, 0))

第二层: 10 - 99 = 10 to (pow(10, 2) - pow(10, 1))

第三层: 100 - 999 = 100 to (pow(10, 3) - pow(10, 2))

...

看到规律了吧。

 public class Solution {
/**
* @param n: An integer.
* return : An array storing 1 to the largest number with n digits.
*/
public List<Integer> numbersByRecursion(int n) {
List<Integer> list = new ArrayList<Integer>();
if (n <= ) return list;
// start[0] refers to the start number for the current levevl.
// start[1] refers to the exponent.
int[] start = {, };
helper(n, list, start);
return list;
} public void helper(int n, List<Integer> list, int[] start) {
if (n == ) return;
for (int i = ; i <= (int)(Math.pow(, start[]) - Math.pow(, start[] - )); i++) {
list.add(start[]++);
}
start[]++;
helper(n - , list, start);
}
}

Print Numbers by Recursion的更多相关文章

  1. [LintCode]——目录

    Yet Another Source Code for LintCode Current Status : 232AC / 289ALL in Language C++, Up to date (20 ...

  2. 51. 顺时针打印矩阵[print matrix in clockwise direction]

    [本文链接] http://www.cnblogs.com/hellogiser/p/print-matrix-in-clockwise-direction.html [题目] 输入一个矩阵,按照从外 ...

  3. 38.输出1到最大的N位数[Print 1 to max number of N bits]

    [题目] 输入数字n,按顺序输出从1最大的n位10进制数.比如输入3,则输出1.2.3一直到最大的3位数即999. [分析] 这是一道很有意思的题目.看起来很简单,其实里面却有不少的玄机. [常规思路 ...

  4. algorithm@ Sieve of Eratosthenes (素数筛选算法) & Related Problem (Return two prime numbers )

    Sieve of Eratosthenes (素数筛选算法) Given a number n, print all primes smaller than or equal to n. It is ...

  5. [Swift] 随机数 | Random numbers

    ★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★➤微信公众号:山青咏芝(shanqingyongzhi)➤博客园地址:山青咏芝(https://www.cnblogs. ...

  6. 1.1 BASIC PROGRAMMING MODEL(算法 Algorithms 第4版)

    1.1.1 private static void exercise111() { StdOut.println("1.1.1:"); StdOut.println((0+15)/ ...

  7. 6 小时 Python 入门

    6 小时 Python 入门 以下操作均在 Windows 环境下进行操作,先说明一下哈 一.安装 Python 1.官网下载 Python 进入官网(https://www.python.org), ...

  8. Codeforces Round #384 (Div. 2) C. Vladik and fractions(构造题)

    传送门 Description Vladik and Chloe decided to determine who of them is better at math. Vladik claimed ...

  9. CF2.C

    C. Vladik and fractions time limit per test 1 second memory limit per test 256 megabytes input stand ...

随机推荐

  1. python自动化之正则

    import re phoneNumRegex=re.compile(r'\d\d\d-\d\d\d-\d\d\d\d') mo=phoneNumRegex.search('My number is ...

  2. Qt——常用控件样式

    下面是我设计.调整.修改的Qt控件样式,仅供参考. Github地址:https://github.com/ikongziming/QtDemo/tree/master/StyleSheetDemo ...

  3. BZOJ2878 NOI2012迷失游乐园(树形dp+环套树+概率期望)

    考虑树的部分分怎么做.令f[i]为i向子树内走的期望路径长度,转移比较显然.算答案时先把其父亲的答案弄好就可以统计自己的答案了. 环套树也类似.树里直接dp,对环上点暴力考虑环上的每条路径,算完后再在 ...

  4. MT【116】三个点动起来

    评:当若干个变量时抓住主变量,立体几何问题平面化.

  5. Linux及安全实践四——ELF文件格式分析

    Linux及安全实践四——ELF文件格式分析 一.ELF文件格式概述 1. ELF:是一种对象文件的格式,用于定义不同类型的对象文件中都放了什么东西.以及都以什么样的格式去放这些东西. 二.分析一个E ...

  6. Centos7搭建redis集群及安装sentinel

    准备三个节点,系统版本为CentOS7.3 11.0.8.15 master 11.0.8.16 slave01 11.0.8.17 slave02 1.安装redis # yum install - ...

  7. 【DP】【CF1099C】 Postcard

    Description 给定一个长度为 \(n\) 的字符串,尽可能包含小写字母,字符 '?' 和字符 '*'.保证上面两种特殊字符若出现则一定出现在一个小写字母的后面一位.要求构造一个长度为 \(k ...

  8. @Html.DropDownListFor默认选中项

    http://q.cnblogs.com/q/73902/ 项目使用mvc4,给dropDownList指定默认值未选中 页面代码是: 1.未有默认选中值 Html.DropDownListFor(m ...

  9. opencv 启动摄像头 C++

    http://blog.csdn.net/thefutureisour/article/details/7530177 在网上看了许多关于OpenCV启动摄像头的资料,但是,都是基于C语言的,代码又臭 ...

  10. 线性判别分析 LDA

    点到判决面的距离 点\(x_0\)到决策面\(g(x)= w^Tx+w_0\)的距离:\(r={g(x)\over \|w\|}\) 广义线性判别函数 因任何非线性函数都可以通过级数展开转化为多项式函 ...