题面

小B最近正在玩一个寻宝游戏,这个游戏的地图中有N个村庄和N-1条道路,并且任何两个村庄之间有且仅有一条路径可达。游戏开始时,玩家可以任意选择一个村庄,瞬间转移到这个村庄,然后可以任意在地图的道路上行走,若走到某个村庄中有宝物,则视为找到该村庄内的宝物,直到找到所有宝物并返回到最初转移到的村庄为止。

小B希望评测一下这个游戏的难度,因此他需要知道玩家找到所有宝物需要行走的最短路程。但是这个游戏中宝物经常变化,有时某个村庄中会突然出现宝物,有时某个村庄内的宝物会突然消失,因此小B需要不断地更新数据,但是小B太懒了,不愿意自己计算,因此他向你求助。为了简化问题,我们认为最开始时所有村庄内均没有宝物

分析

本质上是在一棵树上取出若干节点,询问把这几个节点访问一遍的距离

可以发现如果我们按照dfs序将节点排序,然后将排序后的相邻节点距离相加,最后再加上序列首尾距离,就能求出答案

如序列为{1,3,4,5},则答案为dist(1,3)+dist(3,4)+dist(4,5)+dist(5,1)

因为我们访问节点一定是像dfs一样访问才能得到最短路径,所以正确性显然

我们用一个set维护这个排序后的节点序列

可以发现,每次新加入一个节点之后只会改变节点的前驱和后继相关的距离,维护一下即可

代码

//https://www.luogu.org/problemnew/show/P3320
#include<iostream>
#include<cstdio>
#include<set>
#include<cmath>
#define INF 0x3f3f3f3f
#define maxn 100005
#define maxlogn 20
using namespace std;
int n,m;
struct edge{
int from;
int to;
int next;
int len;
}E[maxn<<1];
int head[maxn];
int sz=1;
void add_edge(int u,int v,int w){
sz++;
E[sz].from=u;
E[sz].to=v;
E[sz].next=head[u];
E[sz].len=w;
head[u]=sz;
}
int logn;
int cnt=0;
int dfn[maxn];
int hash_dfn[maxn];//存储dfs序为i的节点编号
int anc[maxn][maxlogn];
int deep[maxn];
long long dist[maxn];
void dfs(int x,int fa){
dfn[x]=++cnt;
hash_dfn[dfn[x]]=x;
deep[x]=deep[fa]+1;
anc[x][0]=fa;
for(int i=1;i<=logn;i++) anc[x][i]=anc[anc[x][i-1]][i-1];
for(int i=head[x];i;i=E[i].next){
int y=E[i].to;
if(y!=fa){
dist[y]=dist[x]+E[i].len;
dfs(y,x);
}
}
}
int lca(int x,int y){
if(deep[x]<deep[y]) swap(x,y);
for(int i=logn;i>=0;i--){
if(deep[anc[x][i]]>=deep[y]){
x=anc[x][i];
}
}
if(x==y) return x;
for(int i=logn;i>=0;i--){
if(anc[x][i]!=anc[y][i]){
x=anc[x][i];
y=anc[y][i];
}
}
return anc[x][0];
}
long long get_dist(int x,int y){
return dist[x]+dist[y]-2*dist[lca(x,y)];
} set<int>seq; //set里实际上存的是节点的dfs序值而不是编号
long long sum=0,ans;
int main(){
int u,v,w,x;
scanf("%d %d",&n,&m);
logn=log2(n);
for(int i=1;i<n;i++){
scanf("%d %d %d",&u,&v,&w);
add_edge(u,v,w);
add_edge(v,u,w);
}
dfs(1,0);
seq.insert(INF);//防止越界
seq.insert(-INF);
for(int i=1;i<=m;i++){
scanf("%d",&x);
if(!seq.count(dfn[x])){
int l=*(--seq.lower_bound(dfn[x]));
int r=*seq.upper_bound(dfn[x]);
//注意边界判断
if(l!=-INF) sum+=get_dist(hash_dfn[l],x);
if(r!=INF) sum+=get_dist(hash_dfn[r],x);
if(l!=-INF&&r!=INF) sum-=get_dist(hash_dfn[l],hash_dfn[r]);
seq.insert(dfn[x]);
}else{
int l=*(--seq.lower_bound(dfn[x]));
int r=*seq.upper_bound(dfn[x]);
if(l!=-INF) sum-=get_dist(hash_dfn[l],x);
if(r!=INF) sum-=get_dist(hash_dfn[r],x);
if(l!=-INF&&r!=INF) sum+=get_dist(hash_dfn[l],hash_dfn[r]);
seq.erase(seq.lower_bound(dfn[x]));
}
ans=sum;
if(seq.size()-2>=2) ans+=get_dist(hash_dfn[*(++seq.lower_bound(-INF))],hash_dfn[*(--seq.lower_bound(INF))]);
//记得加上首尾距离,注意我们一开始插入了-INF和+INF,所以set的大小>=4时才会有序列首尾
printf("%lld\n",ans);
}
}

[BZOJ 3991][SDOI2015]寻宝游戏(dfs序)的更多相关文章

  1. bzoj 3991: [SDOI2015]寻宝游戏 虚树 set

    目录 题目链接 题解 代码 题目链接 bzoj 3991: [SDOI2015]寻宝游戏 题解 发现每次答案就是把虚树上的路径*2 接在同一关键点上的点的dfs序是相邻的 那么用set动态维护dfs序 ...

  2. 树形结构的维护:BZOJ 3991: [SDOI2015]寻宝游戏

    Description 小B最近正在玩一个寻宝游戏,这个游戏的地图中有N个村庄和N-1条道路,并且任何两个村庄之间有且仅有一条路径可达.游戏开始时,玩家可以任意选择一个村庄,瞬间转移到这个村庄,然后可 ...

  3. bzoj 3991: [SDOI2015]寻宝游戏

    Description 小B最近正在玩一个寻宝游戏,这个游戏的地图中有N个村庄和N-1条道路,并且任何两个村庄之间有且仅有一条路径可达.游戏开始时,玩家可以任意选择一个村庄,瞬间转移到这个村庄,然后可 ...

  4. BZOJ 3991: [SDOI2015]寻宝游戏 树链的并+set

    Description 小B最近正在玩一个寻宝游戏,这个游戏的地图中有N个村庄和N-1条道路,并且任何两个村庄之间有且仅有一条路径可达.游戏开始时,玩家可以任意选择一个村庄,瞬间转移到这个村庄,然后可 ...

  5. BZOJ 3991: [SDOI2015]寻宝游戏 [虚树 树链的并 set]

    传送门 题意: $n$个点的树,$m$次变动使得某个点有宝物或没宝物,询问每次变动后集齐所有宝物并返回原点的最小距离 转化成有根树,求树链的并... 两两树链求并就可以,但我们按照$dfs$序来两两求 ...

  6. BZOJ.3991.[SDOI2015]寻宝游戏(思路 set)

    题目链接 从哪个点出发最短路径都是一样的(最后都要回来). 脑补一下,最短路应该是按照DFS的顺序,依次访问.回溯遍历所有点,然后再回到起点. 即按DFS序排序后,Ans=dis(p1,p2)+dis ...

  7. bzoj3991: [SDOI2015]寻宝游戏--DFS序+LCA+set动态维护

    之前貌似在hdu还是poj上写过这道题. #include<stdio.h> #include<string.h> #include<algorithm> #inc ...

  8. 3991: [SDOI2015]寻宝游戏

    3991: [SDOI2015]寻宝游戏 https://www.lydsy.com/JudgeOnline/problem.php?id=3991 分析: 虚树+set. 要求树上许多点之间的路径的 ...

  9. 【BZOJ】3991: [SDOI2015]寻宝游戏 虚树+DFS序+set

    [题意]给定n个点的带边权树,对于树上存在的若干特殊点,要求任选一个点开始将所有特殊点走遍后返回.现在初始没有特殊点,m次操作每次增加或减少一个特殊点,求每次操作后的总代价.n,m<=10^5. ...

随机推荐

  1. Linux性能优化从入门到实战:04 CPU篇:CPU使用率

      CPU使用率是单位时间内CPU使用情况的统计,以百分比方式展示. $ top top - 11:46:45 up 7 days, 11:52, 1 user, load average: 0.00 ...

  2. Invalid operator< assertion error解析

    这两天忙着在准备3月份打PAT考试,许久没有接触刷题了,各种生疏各种忘记,刷题速度那是一个慢,真是为自己智商着急.今天刷题碰到了一个有意思的编程习惯性错误,好几道题都涉及到自定义排序,需要自己重写&l ...

  3. [POI2007]POW-The Flood(并查集)

    [POI2007]POW-The Flood Description AKD 市处在一个四面环山的谷地里.最近一场大暴雨引发了洪水,AKD 市全被水淹没了.Blue Mary,AKD 市的市长,召集了 ...

  4. leetcode 003

    3. Longest Substring Repeating Character Difficulty:Medium The link: https://leetcode.com/problems/l ...

  5. ForkJoinPool详解

    本文的主要目的是介绍 ForkJoinPool 的适用场景,实现原理,以及示例代码. 说在前面可以说是说明,也可以说下面是结论: ForkJoinPool 不是为了替代 ExecutorService ...

  6. js实时计算价格

    //通过数量,单价的输入,实时显示总价 $("#number,#price").on("input",function(e){ $("#totalPr ...

  7. nginx安装配置_runoob_阅读笔记_20190917

    Nginx 安装配置_runoob菜鸟教程 Nginx 安装配置 Nginx("engine x")是一款是由俄罗斯的程序设计师Igor Sysoev所开发高性能的 Web和 反向 ...

  8. mybaties数据源配置类型(POOLED、JNDI、UNPOOLED)

    dataSource的类型可以配置成其内置类型之一,如UNPOOLED.POOLED.JNDI. 如果将类型设置成UNPOOLED,mybaties会为每一个数据库操作创建一个新的连接,并关闭它.该方 ...

  9. 如何对Web服务器进行飓风级防御

    万一你的网站被DDOS飓风式攻击,你会怎么办?笔者以经验告诉你,这里的每一层都起着保护网站的作用.如果您宁愿拥有如何在单台服务器上维持大量流量的版本,则可以: 专用硬件服务器,无共享主机 千兆上行链路 ...

  10. Conda 中安装 Keras

    conda create -n keras python=3.5 ipykernel activate keras python -m ipykernel install --user --name ...