[BZOJ 3991][SDOI2015]寻宝游戏(dfs序)
题面
小B最近正在玩一个寻宝游戏,这个游戏的地图中有N个村庄和N-1条道路,并且任何两个村庄之间有且仅有一条路径可达。游戏开始时,玩家可以任意选择一个村庄,瞬间转移到这个村庄,然后可以任意在地图的道路上行走,若走到某个村庄中有宝物,则视为找到该村庄内的宝物,直到找到所有宝物并返回到最初转移到的村庄为止。
小B希望评测一下这个游戏的难度,因此他需要知道玩家找到所有宝物需要行走的最短路程。但是这个游戏中宝物经常变化,有时某个村庄中会突然出现宝物,有时某个村庄内的宝物会突然消失,因此小B需要不断地更新数据,但是小B太懒了,不愿意自己计算,因此他向你求助。为了简化问题,我们认为最开始时所有村庄内均没有宝物
分析
本质上是在一棵树上取出若干节点,询问把这几个节点访问一遍的距离
可以发现如果我们按照dfs序将节点排序,然后将排序后的相邻节点距离相加,最后再加上序列首尾距离,就能求出答案
如序列为{1,3,4,5},则答案为dist(1,3)+dist(3,4)+dist(4,5)+dist(5,1)
因为我们访问节点一定是像dfs一样访问才能得到最短路径,所以正确性显然
我们用一个set维护这个排序后的节点序列
可以发现,每次新加入一个节点之后只会改变节点的前驱和后继相关的距离,维护一下即可
代码
//https://www.luogu.org/problemnew/show/P3320
#include<iostream>
#include<cstdio>
#include<set>
#include<cmath>
#define INF 0x3f3f3f3f
#define maxn 100005
#define maxlogn 20
using namespace std;
int n,m;
struct edge{
int from;
int to;
int next;
int len;
}E[maxn<<1];
int head[maxn];
int sz=1;
void add_edge(int u,int v,int w){
sz++;
E[sz].from=u;
E[sz].to=v;
E[sz].next=head[u];
E[sz].len=w;
head[u]=sz;
}
int logn;
int cnt=0;
int dfn[maxn];
int hash_dfn[maxn];//存储dfs序为i的节点编号
int anc[maxn][maxlogn];
int deep[maxn];
long long dist[maxn];
void dfs(int x,int fa){
dfn[x]=++cnt;
hash_dfn[dfn[x]]=x;
deep[x]=deep[fa]+1;
anc[x][0]=fa;
for(int i=1;i<=logn;i++) anc[x][i]=anc[anc[x][i-1]][i-1];
for(int i=head[x];i;i=E[i].next){
int y=E[i].to;
if(y!=fa){
dist[y]=dist[x]+E[i].len;
dfs(y,x);
}
}
}
int lca(int x,int y){
if(deep[x]<deep[y]) swap(x,y);
for(int i=logn;i>=0;i--){
if(deep[anc[x][i]]>=deep[y]){
x=anc[x][i];
}
}
if(x==y) return x;
for(int i=logn;i>=0;i--){
if(anc[x][i]!=anc[y][i]){
x=anc[x][i];
y=anc[y][i];
}
}
return anc[x][0];
}
long long get_dist(int x,int y){
return dist[x]+dist[y]-2*dist[lca(x,y)];
}
set<int>seq; //set里实际上存的是节点的dfs序值而不是编号
long long sum=0,ans;
int main(){
int u,v,w,x;
scanf("%d %d",&n,&m);
logn=log2(n);
for(int i=1;i<n;i++){
scanf("%d %d %d",&u,&v,&w);
add_edge(u,v,w);
add_edge(v,u,w);
}
dfs(1,0);
seq.insert(INF);//防止越界
seq.insert(-INF);
for(int i=1;i<=m;i++){
scanf("%d",&x);
if(!seq.count(dfn[x])){
int l=*(--seq.lower_bound(dfn[x]));
int r=*seq.upper_bound(dfn[x]);
//注意边界判断
if(l!=-INF) sum+=get_dist(hash_dfn[l],x);
if(r!=INF) sum+=get_dist(hash_dfn[r],x);
if(l!=-INF&&r!=INF) sum-=get_dist(hash_dfn[l],hash_dfn[r]);
seq.insert(dfn[x]);
}else{
int l=*(--seq.lower_bound(dfn[x]));
int r=*seq.upper_bound(dfn[x]);
if(l!=-INF) sum-=get_dist(hash_dfn[l],x);
if(r!=INF) sum-=get_dist(hash_dfn[r],x);
if(l!=-INF&&r!=INF) sum+=get_dist(hash_dfn[l],hash_dfn[r]);
seq.erase(seq.lower_bound(dfn[x]));
}
ans=sum;
if(seq.size()-2>=2) ans+=get_dist(hash_dfn[*(++seq.lower_bound(-INF))],hash_dfn[*(--seq.lower_bound(INF))]);
//记得加上首尾距离,注意我们一开始插入了-INF和+INF,所以set的大小>=4时才会有序列首尾
printf("%lld\n",ans);
}
}
[BZOJ 3991][SDOI2015]寻宝游戏(dfs序)的更多相关文章
- bzoj 3991: [SDOI2015]寻宝游戏 虚树 set
目录 题目链接 题解 代码 题目链接 bzoj 3991: [SDOI2015]寻宝游戏 题解 发现每次答案就是把虚树上的路径*2 接在同一关键点上的点的dfs序是相邻的 那么用set动态维护dfs序 ...
- 树形结构的维护:BZOJ 3991: [SDOI2015]寻宝游戏
Description 小B最近正在玩一个寻宝游戏,这个游戏的地图中有N个村庄和N-1条道路,并且任何两个村庄之间有且仅有一条路径可达.游戏开始时,玩家可以任意选择一个村庄,瞬间转移到这个村庄,然后可 ...
- bzoj 3991: [SDOI2015]寻宝游戏
Description 小B最近正在玩一个寻宝游戏,这个游戏的地图中有N个村庄和N-1条道路,并且任何两个村庄之间有且仅有一条路径可达.游戏开始时,玩家可以任意选择一个村庄,瞬间转移到这个村庄,然后可 ...
- BZOJ 3991: [SDOI2015]寻宝游戏 树链的并+set
Description 小B最近正在玩一个寻宝游戏,这个游戏的地图中有N个村庄和N-1条道路,并且任何两个村庄之间有且仅有一条路径可达.游戏开始时,玩家可以任意选择一个村庄,瞬间转移到这个村庄,然后可 ...
- BZOJ 3991: [SDOI2015]寻宝游戏 [虚树 树链的并 set]
传送门 题意: $n$个点的树,$m$次变动使得某个点有宝物或没宝物,询问每次变动后集齐所有宝物并返回原点的最小距离 转化成有根树,求树链的并... 两两树链求并就可以,但我们按照$dfs$序来两两求 ...
- BZOJ.3991.[SDOI2015]寻宝游戏(思路 set)
题目链接 从哪个点出发最短路径都是一样的(最后都要回来). 脑补一下,最短路应该是按照DFS的顺序,依次访问.回溯遍历所有点,然后再回到起点. 即按DFS序排序后,Ans=dis(p1,p2)+dis ...
- bzoj3991: [SDOI2015]寻宝游戏--DFS序+LCA+set动态维护
之前貌似在hdu还是poj上写过这道题. #include<stdio.h> #include<string.h> #include<algorithm> #inc ...
- 3991: [SDOI2015]寻宝游戏
3991: [SDOI2015]寻宝游戏 https://www.lydsy.com/JudgeOnline/problem.php?id=3991 分析: 虚树+set. 要求树上许多点之间的路径的 ...
- 【BZOJ】3991: [SDOI2015]寻宝游戏 虚树+DFS序+set
[题意]给定n个点的带边权树,对于树上存在的若干特殊点,要求任选一个点开始将所有特殊点走遍后返回.现在初始没有特殊点,m次操作每次增加或减少一个特殊点,求每次操作后的总代价.n,m<=10^5. ...
随机推荐
- 【串线篇】spring boot配置文件加载位置
springboot 启动会扫描以下位置的application.properties或者application.yml文件作为Spring boot的默认配置文件 (1)–file:./config/ ...
- 爬虫技术:从sougou网站访问微信公众号的过程
一:分析过程:fidder + chrome开发者工具 1:输入nba跳转的页面,每页显示10条相关公众号的信息 2:分析网站得到每条标题的详情页链接地址在: 3,请求上图中的url,会返回一段js代 ...
- man fdisk
FDISK(8) Linux Programmer?. Manual/Linux程序手册 FDISK(8) NAME/名称 fdisk - Partition ta ...
- Web自动化-浏览器驱动chromedriver安装方法
1.python中安装好selenium包 pip install selenium 2.根据以下驱动对照表下载Chrome对驱动 chromedriver版本 支持的Chrome版本 v2.3 ...
- Eclipse使用maven创建SSM-web项目
1.环境准备 (1)maven:apache-maven-3.5.2,我的maven安装在D:\apache-maven-3.5.2,eclipse中maven配置如下: 先add ,添加好自己的ma ...
- Jenkines邮件中添加图片
1.在Jenkins的邮件插件 Email-ext中的Default Content内容编写html文件,简单模板如下: <html> <head> </head&g ...
- C# 与 C++,语法差别有多小-第三章 C++数据类型 第一部分
一,数据类型 C++: char int short long float double, unsigned long double(128位,19位有效数字), wchar_t, 浮点型文字常量 ...
- URL跳转漏洞
URL跳转原理: 由于越来越多的需要和其他第三方应用交互,以及在自身应用内部根据不同的逻辑将用户引向到不同的页面,譬如一个典型的登录接口就经常需要在认证成功之后将用户引导到登录之前的页面,整个过程中如 ...
- python 全栈开发,Day9(函数的初始,返回值,传参,三元运算)
一.函数的初始 比如python没有len()方法,如果求字符串的长度 使用for循环 s = 'asdfadsf' count = 0 for i in s: count += 1 print(co ...
- asp.net大文件断点续传
以ASP.NET Core WebAPI 作后端 API ,用 Vue 构建前端页面,用 Axios 从前端访问后端 API ,包括文件的上传和下载. 准备文件上传的API #region 文件上传 ...