做完之后看了看题解,怎么一篇和我思路一样的也没有...我好慌啊qwq(所以一定是窝太弱了看不懂dalao的思路)

好吧窝的方法确实很奇怪:

核心代码只有3行 输入 循环 输出 一气呵成 是题解中的豪杰

最重要的是

没有组合数 没有容斥 没有斜率 没有向量 DA☆ZE

(只有我们的好朋友gcd


咳咳 那么开始正题(敲黑板)

首先,我们定义一个网格被一个三角形完全覆盖,当且仅当这个三角形的三个顶点都在网格边界上,并且沿着网格内部任意一条线段把网格切开,一定会把三角形切成两部分。比如下面的例子就是一个完全覆盖(渣鼠绘):

但是这个就不是:(因为沿红色竖线切开,并不能切到三角形)

那么我们发现:

  • 每个顶点都在格点上的三角形,有且只有一个可以被它完全覆盖的网格。所以只要求出原矩形当中所有子矩形的完全覆盖三角形的数量,就可以不重不漏地找出顶点都在格点上的三角形。

——但是子矩形好多啊,枚举左上角和右下角,至少是\(n^2m^2\)的数量级哇qwq

——[恋符]MasterSpark.gif 注意到我们并不关心每个子矩形的位置,而只关心它们的长宽,以及长宽均相同的矩形的数目,所以枚举子矩形的长 \(i\) 和宽 \(j\),则\(i*j\)的矩形数量为\((n-i+1)*(m-j+1)\),子矩阵数量级降为\(nm\)。

至此,原问题转化为 

**给定网格的长宽,迅速求解完全覆盖网格的三角形的数目**

继续观察,我们发现:

  • 如果某个三角形(暂且称之为\(ABC\))完全覆盖了某个网格(\(MNPQ\)),\(ABC\)一定有至少一个顶点在\(MNPQ\)的角上。

首先分析只有一个顶点在\(MNPQ\)角上的情况。不妨设\(A\)点与\(M\)点重合,为了使\(ABC\)完全覆盖\(MNPQ\),\(B\)和\(C\)必须分别在\(NP\)和\(PQ\)边上(如下图):

显然对于一个\(i*j\)的网格(这里\(i\) \(j\)指的是空格的数量而非格点,上图\(i=6,j=10\)),固定顶点的位置有四种,每种对应的另外两个顶点的位置有\((i-1)*(j-1)\)种(\(B\) \(C\)不能与\(N\) \(P\) \(Q\)重合),共\(4*(i-1)*(j-1)\)种。

分析两个顶点在\(MNPQ\)角上的情况。不妨设\(A\)与\(M\)重合。此时另外一个角上的点(不妨设为点\(B\))有三种情况:

1、\(B\)与\(N\)重合。此时\(C\)一定在\(QP\)上。共\((i-1)\)种情况。

2、\(B\)与\(Q\)重合。此时\(C\)一定在\(NP\)上。共\((j-1)\)种情况。

3、\(B\)与\(P\)重合。

这是比较麻烦的一种状态,因为此时\(C\)点可以在网格中能构成三角形的任意一处。但是我们注意到,如果线段\(AB\)除了经过\(M\) \(P\)之外,还经过了一些其他格点,\(C\)是不能与它们重合的。

那么有多少个格点被\(AB\)穿过呢qwq?

显然,不包括\(AB\)本身,有\(gcd(i,j)-1\)个(至于为什么,请读者自己思考(明明就是你自己也不会证吧kora

所以第三种情况的方案数是\((i+1)*(j+1)-4-gcd(i,j)+1\)(这里\(-4\)是因为C点不能放在网格的四个角上)。

注意到以上三种情况都可以反转,从而得到另一组与其一一对应的方案。

分析三个顶点在\(MNPQ\)角上的情况。显然只有四种。

综上,对于一个长宽为\(i,j\)的网格,可以把它完全覆盖的三角形的个数

\(S=4*(i-1)*(j-1)+2*[(i-1)+(j-1)+(i+1)*(j+1)-4-gcd(i,j)+1]+4\)

\(=6*i*j-2*gcd(i,j)\)

枚举子矩阵的复杂度为\(mn\),单次求解\(gcd\)的复杂度为\(log(m+n)\),总复杂度\(O(mnlog(m+n))\),实际运行跑的飞起。

下面是AC代码:

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define R register
#define ll long long
using namespace std; int getgcd(int a, int b)
{
if (!b) return a;
return getgcd(b, a % b);
} int main()
{
ll n, m, ans = 0;
cin >> n >> m;
for (R int i = 1; i <= n; ++i)
for (R int j = 1; j <= m; ++j)
ans += (n - i + 1) * (m - j + 1) * (6 * i * j - 2 * getgcd(i, j));
cout << ans;
return 0;
}

那么这篇文章就到这里,希望对您能有帮助。ありがとナスます~

题解 P3166 【[CQOI2014]数三角形】的更多相关文章

  1. bzoj3505 / P3166 [CQOI2014]数三角形

    P3166 [CQOI2014]数三角形 前置知识:某两个点$(x_{1},,y_{1}),(x_{2},y_{2})\quad (x_{1}<x_{2},y_{1}<y_{2})$所连成 ...

  2. 【题解】洛谷P3166 [CQOI2014] 数三角形(组合+枚举)

    洛谷P3166:https://www.luogu.org/problemnew/show/P3166 思路 用组合数求出所有的3个点组合(包含不合法的) 把横竖的3个点共线的去掉 把斜的3个点共线的 ...

  3. BZOJ3505 & 洛谷P3166 [Cqoi2014]数三角形 【数学、数论】

    题目 给定一个nxm的网格,请计算三点都在格点上的三角形共有多少个.下图为4x4的网格上的一个三角形. 注意三角形的三点不能共线. 输入格式 输入一行,包含两个空格分隔的正整数m和n. 输出格式 输出 ...

  4. P3166 [CQOI2014]数三角形

    传送门 直接求还要考虑各种不合法情况,不好计数 很容易想到容斥 把所有可能减去不合法的情况剩下的就是合法情况 那么我们只要任取不同的三点就是所有可能,不合法情况就是三点共线 对于两点 $(x_1,y_ ...

  5. 洛谷P3166 [CQOI2014]数三角形

    题目描述 给定一个nxm的网格,请计算三点都在格点上的三角形共有多少个.下图为4x4的网格上的一个三角形.注意三角形的三点不能共线. 输入输出格式 输入格式: 输入一行,包含两个空格分隔的正整数m和n ...

  6. Luogu P3166 [CQOI2014]数三角形 组合数学

    好题鸭.. 不好直接求三角形个数,那就用全集-补集,转化为求三点共线的数量. 具体求法是求出水平共线数量与竖直共线数量和斜线共线数量. 用排列组合的知识可知为水平和竖直的为$C_n^3$​与$C_m^ ...

  7. [CQOI2014]数三角形 题解(组合数学+容斥)

    [CQOI2014]数三角形 题解(数论+容斥) 标签:题解 阅读体验:https://zybuluo.com/Junlier/note/1328780 链接题目地址:洛谷P3166 BZOJ 350 ...

  8. BZOJ 3505: [Cqoi2014]数三角形 数学

    3505: [Cqoi2014]数三角形 Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/pr ...

  9. Bzoj 3505: [Cqoi2014]数三角形 数论

    3505: [Cqoi2014]数三角形 Time Limits: 1000 ms  Memory Limits: 524288 KB  Detailed Limits   Description

  10. 【BZOJ3505】[Cqoi2014]数三角形 组合数

    [BZOJ3505][Cqoi2014]数三角形 Description 给定一个nxm的网格,请计算三点都在格点上的三角形共有多少个.下图为4x4的网格上的一个三角形. 注意三角形的三点不能共线. ...

随机推荐

  1. Linux_进程管理&计划任务

    目录 目录 top打开Linux系统任务管理控制台 ps进程查询指令 kill进程关闭指令 一个小实验 一次性计划任务 周期性计划任务 top打开Linux系统任务管理控制台 快捷键: P M k q ...

  2. 用U盘完成win10系统的安装

    电脑太卡了,每次都要重装,然后每次忘记要从哪里开始动手,都要百度,仅以此篇记录下 目录 1.系统盘准备 2.从U盘启动安装 1.系统盘准备 第一步:在电脑中完成系统盘制作工具的安装,由于它是要依赖.n ...

  3. 查看dll中的函数(方法)

    https://jingyan.baidu.com/article/5553fa82b953b365a23934b7.html 查看dll中的函数(方法) 听语音 | 浏览:2004 | 更新:201 ...

  4. pycharm基础使用方法

    0.前言 Pycharm 作为一款针对 Python 的编辑器,配置简单.功能强大.使用起来省时省心,对初学者友好,这也是为什么编程教室一直推荐新手使用 Pycharm 的原因.本文我们将介绍  py ...

  5. 【MM系列】SAP MM模块-货物移动对标准价的影响

    公众号:SAP Technical 本文作者:matinal 原文出处:http://www.cnblogs.com/SAPmatinal/ 原文链接:[MM系列]SAP MM模块-货物移动对标准价的 ...

  6. 【MM系列】SAP 的库存管理

    公众号:SAP Technical 本文作者:matinal 原文出处:http://www.cnblogs.com/SAPmatinal/ 原文链接:[MM系列]SAP 的库存管理   前言部分 大 ...

  7. [Usaco2017 Jan]Promotion Counting

    n只奶牛构成了一个树形的公司,每个奶牛有一个能力值pi,1号奶牛为树根.问对于每个奶牛来说,它的子树中有几个能力值比它大的.Inputn,表示有几只奶牛 n<=100000接下来n行为1-n号奶 ...

  8. Visdom可视化

    Visdom是基于Pytorch的可视化工具 安装方式: pip install visdom 因为Visdom本质上是一个Web服务器,把数据渲染到网页上,因此首先需要运行这个 服务器,如下: py ...

  9. Go语言入门篇-基本类型排序和 slice 排序

    参见博客:https://blog.csdn.net/u010983881/article/details/52460998 package main import ( "sort" ...

  10. Python3 字符编码到底是个什么鬼

    首先ASCII码是美国人自己给自己用的,只针对英文及一系列符号,凭想象预留了编码位置,不料有个东方大国文字过于复杂,预留根本不够,所以这个大国重新搞了个编码gb2312.gbk等,结果就是全世界各国都 ...