题解 P3166 【[CQOI2014]数三角形】
做完之后看了看题解,怎么一篇和我思路一样的也没有...我好慌啊qwq(所以一定是窝太弱了看不懂dalao的思路)
好吧窝的方法确实很奇怪:
核心代码只有3行 输入 循环 输出 一气呵成 是题解中的豪杰
最重要的是
没有组合数 没有容斥 没有斜率 没有向量 DA☆ZE
(只有我们的好朋友gcd
咳咳 那么开始正题(敲黑板)
首先,我们定义一个网格被一个三角形完全覆盖,当且仅当这个三角形的三个顶点都在网格边界上,并且沿着网格内部任意一条线段把网格切开,一定会把三角形切成两部分。比如下面的例子就是一个完全覆盖(渣鼠绘):

但是这个就不是:(因为沿红色竖线切开,并不能切到三角形)

那么我们发现:
- 每个顶点都在格点上的三角形,有且只有一个可以被它完全覆盖的网格。所以只要求出原矩形当中所有子矩形的完全覆盖三角形的数量,就可以不重不漏地找出顶点都在格点上的三角形。
——但是子矩形好多啊,枚举左上角和右下角,至少是\(n^2m^2\)的数量级哇qwq
——[恋符]MasterSpark.gif 注意到我们并不关心每个子矩形的位置,而只关心它们的长宽,以及长宽均相同的矩形的数目,所以枚举子矩形的长 \(i\) 和宽 \(j\),则\(i*j\)的矩形数量为\((n-i+1)*(m-j+1)\),子矩阵数量级降为\(nm\)。
至此,原问题转化为
**给定网格的长宽,迅速求解完全覆盖网格的三角形的数目**
继续观察,我们发现:
- 如果某个三角形(暂且称之为\(ABC\))完全覆盖了某个网格(\(MNPQ\)),\(ABC\)一定有至少一个顶点在\(MNPQ\)的角上。
首先分析只有一个顶点在\(MNPQ\)角上的情况。不妨设\(A\)点与\(M\)点重合,为了使\(ABC\)完全覆盖\(MNPQ\),\(B\)和\(C\)必须分别在\(NP\)和\(PQ\)边上(如下图):

显然对于一个\(i*j\)的网格(这里\(i\) \(j\)指的是空格的数量而非格点,上图\(i=6,j=10\)),固定顶点的位置有四种,每种对应的另外两个顶点的位置有\((i-1)*(j-1)\)种(\(B\) \(C\)不能与\(N\) \(P\) \(Q\)重合),共\(4*(i-1)*(j-1)\)种。
分析两个顶点在\(MNPQ\)角上的情况。不妨设\(A\)与\(M\)重合。此时另外一个角上的点(不妨设为点\(B\))有三种情况:
1、\(B\)与\(N\)重合。此时\(C\)一定在\(QP\)上。共\((i-1)\)种情况。
2、\(B\)与\(Q\)重合。此时\(C\)一定在\(NP\)上。共\((j-1)\)种情况。
3、\(B\)与\(P\)重合。
这是比较麻烦的一种状态,因为此时\(C\)点可以在网格中能构成三角形的任意一处。但是我们注意到,如果线段\(AB\)除了经过\(M\) \(P\)之外,还经过了一些其他格点,\(C\)是不能与它们重合的。
那么有多少个格点被\(AB\)穿过呢qwq?
显然,不包括\(AB\)本身,有\(gcd(i,j)-1\)个(至于为什么,请读者自己思考(明明就是你自己也不会证吧kora
所以第三种情况的方案数是\((i+1)*(j+1)-4-gcd(i,j)+1\)(这里\(-4\)是因为C点不能放在网格的四个角上)。
注意到以上三种情况都可以反转,从而得到另一组与其一一对应的方案。
分析三个顶点在\(MNPQ\)角上的情况。显然只有四种。
综上,对于一个长宽为\(i,j\)的网格,可以把它完全覆盖的三角形的个数
\(S=4*(i-1)*(j-1)+2*[(i-1)+(j-1)+(i+1)*(j+1)-4-gcd(i,j)+1]+4\)
\(=6*i*j-2*gcd(i,j)\)
枚举子矩阵的复杂度为\(mn\),单次求解\(gcd\)的复杂度为\(log(m+n)\),总复杂度\(O(mnlog(m+n))\),实际运行跑的飞起。
下面是AC代码:
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define R register
#define ll long long
using namespace std;
int getgcd(int a, int b)
{
if (!b) return a;
return getgcd(b, a % b);
}
int main()
{
ll n, m, ans = 0;
cin >> n >> m;
for (R int i = 1; i <= n; ++i)
for (R int j = 1; j <= m; ++j)
ans += (n - i + 1) * (m - j + 1) * (6 * i * j - 2 * getgcd(i, j));
cout << ans;
return 0;
}
那么这篇文章就到这里,希望对您能有帮助。ありがとナスます~
题解 P3166 【[CQOI2014]数三角形】的更多相关文章
- bzoj3505 / P3166 [CQOI2014]数三角形
P3166 [CQOI2014]数三角形 前置知识:某两个点$(x_{1},,y_{1}),(x_{2},y_{2})\quad (x_{1}<x_{2},y_{1}<y_{2})$所连成 ...
- 【题解】洛谷P3166 [CQOI2014] 数三角形(组合+枚举)
洛谷P3166:https://www.luogu.org/problemnew/show/P3166 思路 用组合数求出所有的3个点组合(包含不合法的) 把横竖的3个点共线的去掉 把斜的3个点共线的 ...
- BZOJ3505 & 洛谷P3166 [Cqoi2014]数三角形 【数学、数论】
题目 给定一个nxm的网格,请计算三点都在格点上的三角形共有多少个.下图为4x4的网格上的一个三角形. 注意三角形的三点不能共线. 输入格式 输入一行,包含两个空格分隔的正整数m和n. 输出格式 输出 ...
- P3166 [CQOI2014]数三角形
传送门 直接求还要考虑各种不合法情况,不好计数 很容易想到容斥 把所有可能减去不合法的情况剩下的就是合法情况 那么我们只要任取不同的三点就是所有可能,不合法情况就是三点共线 对于两点 $(x_1,y_ ...
- 洛谷P3166 [CQOI2014]数三角形
题目描述 给定一个nxm的网格,请计算三点都在格点上的三角形共有多少个.下图为4x4的网格上的一个三角形.注意三角形的三点不能共线. 输入输出格式 输入格式: 输入一行,包含两个空格分隔的正整数m和n ...
- Luogu P3166 [CQOI2014]数三角形 组合数学
好题鸭.. 不好直接求三角形个数,那就用全集-补集,转化为求三点共线的数量. 具体求法是求出水平共线数量与竖直共线数量和斜线共线数量. 用排列组合的知识可知为水平和竖直的为$C_n^3$与$C_m^ ...
- [CQOI2014]数三角形 题解(组合数学+容斥)
[CQOI2014]数三角形 题解(数论+容斥) 标签:题解 阅读体验:https://zybuluo.com/Junlier/note/1328780 链接题目地址:洛谷P3166 BZOJ 350 ...
- BZOJ 3505: [Cqoi2014]数三角形 数学
3505: [Cqoi2014]数三角形 Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/pr ...
- Bzoj 3505: [Cqoi2014]数三角形 数论
3505: [Cqoi2014]数三角形 Time Limits: 1000 ms Memory Limits: 524288 KB Detailed Limits Description
- 【BZOJ3505】[Cqoi2014]数三角形 组合数
[BZOJ3505][Cqoi2014]数三角形 Description 给定一个nxm的网格,请计算三点都在格点上的三角形共有多少个.下图为4x4的网格上的一个三角形. 注意三角形的三点不能共线. ...
随机推荐
- linux(centOS7)的基本操作(二) 目录和文件管理
1.显示当前工作目录的绝对路径 pwd 2.显示当前工作目录下的子目录和文件 ls [-l] [-h] [-a] 如果只调用ls,子目录和文件会简单的罗列出来,-l表示将其以详细列表的形式展示,-h表 ...
- Linux监控命令之==>free
一.命令说明 free 命令显示系统内存的使用情况:包括物理内存.交换内存(swap)和内核缓冲区内存 二.参数说明 -b -k -m -g:分别以字节.KB.MB.GB为单位显示内存使用情况 -l: ...
- delphi xe2 64位嵌入汇编问题 https://bbs.csdn.net/topics/390333981
Function xxx(xxx):xxx;assembler;asm XOR RAX , RAX ...end;这样的可以. 0 0 引用 ・ 举报 ・ 管理 5t4rk 回复于 2013- ...
- vue中的$EventBus.$emit、$on的应用
今天在项目中遇到的一个需求: 在一个选项卡功能的页面,出现的问题是,当点击选项卡的某个选项时,会同时加载整个选项卡的数据,本身产品就很大,数据很多,所以这个问题无法忽略: 仔细研究下发现,当刚进入页面 ...
- 【VS开发】C++调用外部程序
关于三个SDK函数:WinExec, ShellExecute,CreateProcess的其他注意事项:[1]定义头文件必须定义以下两个头文件: [cpp] view plain copy #inc ...
- mysql先分组,然后取每个分组中的第2大的记录
文章参考http://www.xaprb.com/blog/2006/12/07/how-to-select-the-firstleastmax-row-per-group-in-sql/ 首先建表: ...
- SVN服务器和客户端使用教程总结
一.SVN简介 Subversion是什么? 它是一个自由/开源的版本控制系统,一组文件存放在中心版本库,记录每一次文件和目录的修改,Subversion允许把数据恢复到早期版本,或是检查数据修改的历 ...
- 关于postman
1 Get 1.1 Params 直接显示在url上,即url参数,用&分隔开. springboot中可以用@RequestParam注解获取. 1.2 Headers 1.3 Body 1 ...
- 最小配置启动SQL SERVER,更改SQL Server最大内存大小导致不能启动的解决方法
如果存在配置问题而无法启动服务器,则可以使用最小配置启动选项来启动 Microsoft SQL Server 实例. 这就是启动选项 -f. 使用最小配置启动 SQL Server 实例会自动将服务器 ...
- MySQL数据库的特点和优势
MySQL数据库的特点和优势: 1.MySQL性能卓越.服务稳定,很少出现异常宕机. 2.MySQL开放源代码且无版权制约,自主性及使用成本低. 3.MySQL历史悠久,用户使用活跃,遇到问题可以寻求 ...