(转载)准确率(accuracy),精确率(Precision),召回率(Recall)和综合评价指标(F1-Measure )-绝对让你完全搞懂这些概念
自然语言处理(ML),机器学习(NLP),信息检索(IR)等领域,评估(evaluation)是一个必要的工作,而其评价指标往往有如下几点:准确率(accuracy),精确率(Precision),召回率(Recall)和F1-Measure。
本文将简单介绍其中几个概念。中文中这几个评价指标翻译各有不同,所以一般情况下推荐使用英文。
现在我先假定一个具体场景作为例子:
假如某个班级有男生80人,女生20人,共计100人.目标是找出所有女生.
现在某人挑选出50个人,其中20人是女生,另外还错误的把30个男生也当作女生挑选出来了.
作为评估者的你需要来评估(evaluation)下他的工作
将挑选结果用 矩阵示意表来表示 : 定义TP,FN,FP,TN四种分类情况
相关(Relevant),正类 | 无关(NonRelevant),负类 | |
被检索到(Retrieved) | TP 系统检索到的相关文档,例"其中20人是女生" | FP 系统检索到的不相关文档,例”错误把30个男生当女生“ |
未被检索到(Not Retrieved) | FN 相关系统未检索到的文档,例"未挑0人是女生" | TN 相关但是系统没有检索到的文档,例”未挑50人非女生“ |
准确率(accuracy)的公式是,其定义是: 对于给定的测试数据集,分类器正确分类的样本数与总样本数之比。也就是损失函数是0-1损失时测试数据集上的准确率
A = (20+50) / 100 = 70%
精确率(precision)的公式是,它计算的是所有被检索到的item中,"应该被检索到"的item占的比例。
P = 20 / (20+30) = 40%
召回率(recall)的公式是,它计算的是所有检索到的item占所有"应该检索到的item"的比例。
R = 20 / (20 + 0) = 100%
综合评价指标(F-Measure)是Precision和Recall加权调和平均:
当参数a=1时,就是最常见的F1了:
P和R指标有的时候是矛盾的,综合考虑精确率(precision)和召回率(recall)这两个度量值。很容易理解,F1综合了P和R的结果,当F1较高时则比较说明实验方法比较理想。
F1 = 2*0.4*1 / (0.4 + 1) = 57%
(转载)准确率(accuracy),精确率(Precision),召回率(Recall)和综合评价指标(F1-Measure )-绝对让你完全搞懂这些概念的更多相关文章
- 准确率(Accuracy), 精确率(Precision), 召回率(Recall)和F1-Measure
yu Code 15 Comments 机器学习(ML),自然语言处理(NLP),信息检索(IR)等领域,评估(Evaluation)是一个必要的 工作,而其评价指标往往有如下几点:准确率(Accu ...
- 准确率(Accuracy), 精确率(Precision), 召回率(Recall)和F1-Measure(对于二分类问题)
首先我们可以计算准确率(accuracy),其定义是: 对于给定的测试数据集,分类器正确分类的样本数与总样本数之比.也就是损失函数是0-1损失时测试数据集上的准确率. 下面在介绍时使用一下例子: 一个 ...
- 精确率与召回率,RoC曲线与PR曲线
在机器学习的算法评估中,尤其是分类算法评估中,我们经常听到精确率(precision)与召回率(recall),RoC曲线与PR曲线这些概念,那这些概念到底有什么用处呢? 首先,我们需要搞清楚几个拗口 ...
- 目标检测评价指标mAP 精准率和召回率
首先明确几个概念,精确率,召回率,准确率 精确率precision 召回率recall 准确率accuracy 以一个实际例子入手,假设我们有100个肿瘤病人. 95个良性肿瘤病人,5个恶性肿瘤病人. ...
- 准确率、精确率、召回率、F1
在搭建一个AI模型或者是机器学习模型的时候怎么去评估模型,比如我们前期讲的利用朴素贝叶斯算法做的垃圾邮件分类算法,我们如何取评估它.我们需要一套完整的评估方法对我们的模型进行正确的评估,如果模型效果比 ...
- 机器学习性能指标精确率、召回率、F1值、ROC、PRC与AUC--周振洋
机器学习性能指标精确率.召回率.F1值.ROC.PRC与AUC 精确率.召回率.F1.AUC和ROC曲线都是评价模型好坏的指标,那么它们之间有什么不同,又有什么联系呢.下面让我们分别来看一下这几个指标 ...
- 一文让你彻底理解准确率,精准率,召回率,真正率,假正率,ROC/AUC
参考资料:https://zhuanlan.zhihu.com/p/46714763 ROC/AUC作为机器学习的评估指标非常重要,也是面试中经常出现的问题(80%都会问到).其实,理解它并不是非常难 ...
- 二分类算法的评价指标:准确率、精准率、召回率、混淆矩阵、AUC
评价指标是针对同样的数据,输入不同的算法,或者输入相同的算法但参数不同而给出这个算法或者参数好坏的定量指标. 以下为了方便讲解,都以二分类问题为前提进行介绍,其实多分类问题下这些概念都可以得到推广. ...
- 目标检测评价标准(mAP, 精准度(Precision), 召回率(Recall), 准确率(Accuracy),交除并(IoU))
1. TP , FP , TN , FN定义 TP(True Positive)是正样本预测为正样本的数量,即与Ground truth区域的IoU>=threshold的预测框 FP(Fals ...
随机推荐
- Window系统、主函数和窗体函数这三者之间的关系
理解Window系统.主窗体.窗体函数这三者之间的关系,对于编写Windows程序十分重要. 主函数和窗体函数都是由Windows系统来调用的函数.仅仅只是主函数是程序启动之后.系统首先调用的函数: ...
- Java利用数组随机抽取幸运观众
编写程序,事先将所有观众姓名输入数组,然后获得数组元素的总数量,最后在数组元素中随机抽取元素的下标,根据抽取的下标获得幸运观众的姓名. 思路如下: 定义输入框的按键事件,使用KeyEvent类的get ...
- Java -- 获取指定接口的所有实现类或获取指定类的所有继承类
Class : ClassUtil package pri.lime.main; import java.io.File; import java.io.IOException; import jav ...
- iOS 播放gif动态图的方式探讨
原文链接:http://my.oschina.net/u/2340880/blog/608560 摘要iOS中没有现成的接口来展示gif动态图,但可以通过其他的方式来处理gif图的展示.iOS中播放g ...
- weblogic上部署项目出错
一. Unable to access the selected application. Exception in AppMerge flows' progression Exception in ...
- U3D调用7z解压文件
using UnityEngine; using System; using System.IO; using System.Diagnostics; public class Test : Mono ...
- session会话保持
#coding=utf-8 from flask import Flask from flask import request from flask import redirect from flas ...
- QT显示中文 连接上文
1.首先是建立Linux开发环境1.1.在windowsXP下安装博创公司提供的虚拟机软件VMware Workstation,版本为VMware-workstation-full-7.0.1-227 ...
- js replace replaceAll
今天因为一些原因来看这篇博文,测试了一下根本不对.replace根本没有string.replace("字符","字符")这样的写法,而是stringObjec ...
- IOS 6 和 IOS7 UITableViewCell上添加控件的获取
假设每个cell上面都有UIButton,怎么判断哪个Cell上的按钮被按下了呢? IOS6上 -(IBAction)btnClick:(id)sender { UIButton *btn = (UI ...