codevs 1380 没有上司的舞会

变式题目:给定一棵树每个点有一个点权,求一个独立集使得点权和最大,树上的独立集指的是选取树上的点,使尽量多的点不直接相连

 时间限制: 1 s
 空间限制: 128000 KB
 题目等级 : 钻石 Diamond 
题目描述 Description

Ural大学有N个职员,编号为1~N。他们有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司。每个职员有一个快乐指数。现在有个周年庆宴会,要求与会职员的快乐指数最大。但是,没有职员愿和直接上司一起与会。

输入描述 Input Description

第一行一个整数N。(1<=N<=6000)
接下来N行,第i+1行表示i号职员的快乐指数Ri。(-128<=Ri<=127)
接下来N-1行,每行输入一对整数L,K。表示K是L的直接上司。
最后一行输入0,0。

输出描述 Output Description

输出最大的快乐指数。

样例输入 Sample Input

7
1
1
1
1
1
1
1
1 3
2 3
6 4
7 4
4 5
3 5
0 0

样例输出 Sample Output

5

数据范围及提示 Data Size & Hint

各个测试点1s

分类标签 Tags

动态规划 树型DP

 /*树形Dp:一般以节点作为状态划分的点。
对于当前的节点代表的人:
1.这个人去舞会,那么他的下属一定不去,状态转移到子节点
2.这个人不去舞会,但是他的下属也不一定会去,因为不一定是最优,就是在子节点去与不去间取最优
树形Dp一般从根节点开始记忆化搜索来实现。
*/
#include<iostream>
using namespace std;
#include<cstdio>
#define N 8000
struct Edge{
int v,last;
}edge[N];
bool flag[N];/*找根节点*/
int f[N][],val[N];/*f[i][1]代表当前节点去舞会的这棵子树上快乐最大值,f[i][0]代表当前节点不去舞会的这棵子树上快乐最大值,*/
int head[N]={},cnt=;
int n;
void add_edge(int u,int v)
{
++cnt;
edge[cnt].v=v;/*建立边表*/
edge[cnt].last=head[u];
head[u]=cnt;
}
void dp(int u)
{
f[u][]=;/*搜索的边界就是没有下属的人,就是f[u][1]=val[u]; f[u][0]=0;*/
f[u][]=val[u];
for(int l=head[u];l;l=edge[l].last)/*对于有下属的人,必须知道他的下属情况才能判断*/
{
int v=edge[l].v;
dp(v);/*搜索下属*/
f[u][]=max(f[u][],f[u][]+f[v][]);/*注意这是在for循环中当前点的f[v][0]会被加了多次,v不同*/
f[u][]=f[u][]+max(f[v][],f[v][]);/*当前节点不去,就判断他的某个子节点去还是不去最优*/
}
}
int main()
{
scanf("%d",&n);
for(int i=;i<=n;++i)
scanf("%d",&val[i]);
for(int i=;i<n;++i)
{
int u,v;
scanf("%d%d",&v,&u);
flag[v]=true;/*给有父节点的点标上标记*/
add_edge(u,v);
}
int u,v;
scanf("%d%d",&u,&v);
for(int i=;i<=n;++i)
if(!flag[i])/*找到根节点*/
{
dp(i);
printf("%d\n",max(f[i][],f[i][]));
break;
}
return ;
}

树形DP--codevs 1380 没有上司的舞会的更多相关文章

  1. codevs 1380 没有上司的舞会 - 树形动态规划

    题目描述 Description Ural大学有N个职员,编号为1~N.他们有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司.每个职员有一个快乐指数.现在有个周年庆宴会 ...

  2. 【树形dp入门】没有上司的舞会 @洛谷P1352

    传送门 题目描述 某大学有N个职员,编号为1~N.他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司.现在有个周年庆宴会,宴会每邀请来一个职员都会增加一定的快乐指 ...

  3. Codevs 1380 没有上司的舞会

    时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond 题目描述 Description Ural大学有N个职员,编号为1~N.他们有从属关系,也就是说他们的关系就 ...

  4. wikioi 1380 没有上司的舞会 树形dp

    1380 没有上司的舞会 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond       题目描述 Description Ural大学有N个职员,编号为1~N.他 ...

  5. 树形DP codevs 1814 最长链

    codevs 1814 最长链  时间限制: 1 s  空间限制: 256000 KB  题目等级 : 钻石 Diamond 题目描述 Description 现给出一棵N个结点二叉树,问这棵二叉树中 ...

  6. 树形dp|无根树转有根树|2015年蓝桥杯生命之树

    2015年蓝桥杯第十题--生命之树(无根树dfs) ①暴力解法:枚举子集(选点) + dfs判断连通性(题目要求连通)满足上面两个条件下找出最大值权值和 ②dfs无根树转有根树,递归找最优 先学习无根 ...

  7. codevs 1380/HDU 1520 树形dp

    1380 没有上司的舞会 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题解 查看运行结果 回到问题 题目描述 Description Ural大学有N个职员 ...

  8. Codevs1380没有上司的舞会_KEY

    没有上司的舞会 1380 没有上司的舞会 时间限制: 1 s 空间限制: 128000 KB 题目描述 Description Ural大学有N个职员,编号为1~N.他们有从属关系,也就是说他们的关系 ...

  9. POJ_3342_Party at Hali-Bula_树形DP

    POJ_3342_Party at Hali-Bula_树形DP 题意:直接上司和本人不能同时参加,求最多参加人数,并回答是否唯一解. 分析:常规树形DP,需要再维护一下选/不选当前点取得最大值时是否 ...

随机推荐

  1. Java后台开发面试题总结

    1>如何定位线上服务OOM问题 2>JVM的GC ROOTS存在于那些地方 3>mysql innodb怎样做查询优化 4>java cas的概念 Java服务OOM,比较常见 ...

  2. 遍历目录大小——php经典实例

    遍历目录大小——php经典实例 <?php function dirSize($dir){ //定义大小初始值 $sum=; //打开 $dd=opendir($dir); //遍历 while ...

  3. python 实现字符串转整型

    def str2Int(s): l=list(s) if len(l)<=0: return 0 flag=0 sum=0 dict_num={':9} dict_tag={'+':1,'-': ...

  4. 美团实习Java岗面经,已拿offer

    作者:icysnowgx 链接:https://www.nowcoder.com/discuss/71954?type=2&order=3&pos=10&page=1 来源:牛 ...

  5. 超详细的Java面试题总结(四 )之JavaWeb基础知识总结

    系列文章请查看: 超详细的Java面试题总结(一)之Java基础知识篇 超详细的Java面试题总结(二)之Java基础知识篇 超详细的Java面试题总结(三)之Java集合篇常见问题 超详细的Java ...

  6. 修改帧大小和socket缓冲区大小(转)

    修改帧大小和socket缓冲区大小 MTU (最大传输单元)的缺省值为1500. 通过下面命令将其改为9000(jumbo frame) % ifconfig eth0 mtu 9000 socket ...

  7. Java-悲观锁和乐观锁

    Java中的乐观锁与悲观锁: 1. Java中典型的synchronized就是一种悲观锁,也就是独占锁,不过JDK1.6之后对synchronized已经做了许多优化,也不能说是完全的悲观锁了: 2 ...

  8. 《HBase权威指南》学习笔记

    第一章  简介 背景: GFS:集群存储海量数据,数据在节点间冗余复制,即使一台存储服务器发生故障,也不会影响可用性. GFS的缺点:适合存储少许非常大的文件,而不适合存储大量小文件,因为文件的元数据 ...

  9. 【UOJ】#79. 一般图最大匹配

    题解 板子!我相信其实没人来看我的板子!但是为了防止我忘记,我还是要写点什么 我们考虑二分图,为什么二分图就能那么轻松地写出匹配的代码呢?因为匹配只会发生在黑点和白点之间,我们找寻增广路,必然是一黑一 ...

  10. 【51nod】1340 地铁环线

    今天头非常疼,躲在家里没去机房 反正都要颓废了,然后花了一上午研究了一下这道神题怎么做-- 题解 首先我们发现,如果我们设\(dis[i]\)为从\(0\)节点走到\(i\)节点的距离 那么题目中给出 ...