codevs 1380 没有上司的舞会

变式题目:给定一棵树每个点有一个点权,求一个独立集使得点权和最大,树上的独立集指的是选取树上的点,使尽量多的点不直接相连

 时间限制: 1 s
 空间限制: 128000 KB
 题目等级 : 钻石 Diamond 
题目描述 Description

Ural大学有N个职员,编号为1~N。他们有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司。每个职员有一个快乐指数。现在有个周年庆宴会,要求与会职员的快乐指数最大。但是,没有职员愿和直接上司一起与会。

输入描述 Input Description

第一行一个整数N。(1<=N<=6000)
接下来N行,第i+1行表示i号职员的快乐指数Ri。(-128<=Ri<=127)
接下来N-1行,每行输入一对整数L,K。表示K是L的直接上司。
最后一行输入0,0。

输出描述 Output Description

输出最大的快乐指数。

样例输入 Sample Input

7
1
1
1
1
1
1
1
1 3
2 3
6 4
7 4
4 5
3 5
0 0

样例输出 Sample Output

5

数据范围及提示 Data Size & Hint

各个测试点1s

分类标签 Tags

动态规划 树型DP

 /*树形Dp:一般以节点作为状态划分的点。
对于当前的节点代表的人:
1.这个人去舞会,那么他的下属一定不去,状态转移到子节点
2.这个人不去舞会,但是他的下属也不一定会去,因为不一定是最优,就是在子节点去与不去间取最优
树形Dp一般从根节点开始记忆化搜索来实现。
*/
#include<iostream>
using namespace std;
#include<cstdio>
#define N 8000
struct Edge{
int v,last;
}edge[N];
bool flag[N];/*找根节点*/
int f[N][],val[N];/*f[i][1]代表当前节点去舞会的这棵子树上快乐最大值,f[i][0]代表当前节点不去舞会的这棵子树上快乐最大值,*/
int head[N]={},cnt=;
int n;
void add_edge(int u,int v)
{
++cnt;
edge[cnt].v=v;/*建立边表*/
edge[cnt].last=head[u];
head[u]=cnt;
}
void dp(int u)
{
f[u][]=;/*搜索的边界就是没有下属的人,就是f[u][1]=val[u]; f[u][0]=0;*/
f[u][]=val[u];
for(int l=head[u];l;l=edge[l].last)/*对于有下属的人,必须知道他的下属情况才能判断*/
{
int v=edge[l].v;
dp(v);/*搜索下属*/
f[u][]=max(f[u][],f[u][]+f[v][]);/*注意这是在for循环中当前点的f[v][0]会被加了多次,v不同*/
f[u][]=f[u][]+max(f[v][],f[v][]);/*当前节点不去,就判断他的某个子节点去还是不去最优*/
}
}
int main()
{
scanf("%d",&n);
for(int i=;i<=n;++i)
scanf("%d",&val[i]);
for(int i=;i<n;++i)
{
int u,v;
scanf("%d%d",&v,&u);
flag[v]=true;/*给有父节点的点标上标记*/
add_edge(u,v);
}
int u,v;
scanf("%d%d",&u,&v);
for(int i=;i<=n;++i)
if(!flag[i])/*找到根节点*/
{
dp(i);
printf("%d\n",max(f[i][],f[i][]));
break;
}
return ;
}

树形DP--codevs 1380 没有上司的舞会的更多相关文章

  1. codevs 1380 没有上司的舞会 - 树形动态规划

    题目描述 Description Ural大学有N个职员,编号为1~N.他们有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司.每个职员有一个快乐指数.现在有个周年庆宴会 ...

  2. 【树形dp入门】没有上司的舞会 @洛谷P1352

    传送门 题目描述 某大学有N个职员,编号为1~N.他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司.现在有个周年庆宴会,宴会每邀请来一个职员都会增加一定的快乐指 ...

  3. Codevs 1380 没有上司的舞会

    时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond 题目描述 Description Ural大学有N个职员,编号为1~N.他们有从属关系,也就是说他们的关系就 ...

  4. wikioi 1380 没有上司的舞会 树形dp

    1380 没有上司的舞会 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond       题目描述 Description Ural大学有N个职员,编号为1~N.他 ...

  5. 树形DP codevs 1814 最长链

    codevs 1814 最长链  时间限制: 1 s  空间限制: 256000 KB  题目等级 : 钻石 Diamond 题目描述 Description 现给出一棵N个结点二叉树,问这棵二叉树中 ...

  6. 树形dp|无根树转有根树|2015年蓝桥杯生命之树

    2015年蓝桥杯第十题--生命之树(无根树dfs) ①暴力解法:枚举子集(选点) + dfs判断连通性(题目要求连通)满足上面两个条件下找出最大值权值和 ②dfs无根树转有根树,递归找最优 先学习无根 ...

  7. codevs 1380/HDU 1520 树形dp

    1380 没有上司的舞会 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题解 查看运行结果 回到问题 题目描述 Description Ural大学有N个职员 ...

  8. Codevs1380没有上司的舞会_KEY

    没有上司的舞会 1380 没有上司的舞会 时间限制: 1 s 空间限制: 128000 KB 题目描述 Description Ural大学有N个职员,编号为1~N.他们有从属关系,也就是说他们的关系 ...

  9. POJ_3342_Party at Hali-Bula_树形DP

    POJ_3342_Party at Hali-Bula_树形DP 题意:直接上司和本人不能同时参加,求最多参加人数,并回答是否唯一解. 分析:常规树形DP,需要再维护一下选/不选当前点取得最大值时是否 ...

随机推荐

  1. 在wamp下增加多版本的PHP(PHP5.3,PHP5.4,PHP5.5)支持

    1.安装WAMPServer 根据自己的操作系统选择相应的WAMP版本,我这里选择WAMPSERVER-32 BITS & PHP 5.5-2.5, 双击安装,选择安装目录即可,超级简单.根据 ...

  2. elk系列3之通过json格式采集Nginx日志【转】

    转自 elk系列3之通过json格式采集Nginx日志 - 温柔易淡 - 博客园http://www.cnblogs.com/liaojiafa/p/6158245.html preface 公司采用 ...

  3. WebBrowser中运行js

    HtmlElement script = wf.WebBrowser.Document.CreateElement("script"); script.SetAttribute(& ...

  4. caffe Python API 之Inference

    #以SSD的检测测试为例 def detetion(image_dir,weight,deploy,resolution=300): caffe.set_mode_gpu() net = caffe. ...

  5. 杂乱的code

    /*o(n)的堆化方法*/ void myjust(vector<int>& A,int i){ int l=i*2+1; int r=i*2+2; int minn=i; if( ...

  6. Linux内核的三种调度策略

    一 Linux内核的三种调度策略:   1,SCHED_OTHER 分时调度策略, 2,SCHED_FIFO实时调度策略,先到先服务.一旦占用cpu则一直运行.一直运行直到有更高优先级任务到达或自己放 ...

  7. HDU 2647 Reward(拓扑排序+判断环+分层)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2647 题目大意:要给n个人发工资,告诉你m个关系,给出m行每行a b,表示b的工资小于a的工资,最低工 ...

  8. HDU 4553 约会安排(线段树区间合并+双重标记)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4553 题目大意:就是有三种操作: ①DS x,安排一段长度为x的空闲时间跟屌丝一起,输出这段时间的起点 ...

  9. TeX Live & TeXstudio 安装手记

    数据库课上又看到了那位用 beamer 做 slides 的师兄,想到自己一拖再拖的LaTeX入门,决定赶快动手装个环境再说~在经过一番搜索和研究之后决定先在 windows 底下试用,选择 TeX ...

  10. 一次压力测试Loadrunner经验分享

    一次压力测试Loadrunner经验分享 http://blog.csdn.net/lxlmj/article/category/553431 loadrunner测试socketstcpserver ...