POJ 2888 Magic Bracelet [Polya 矩阵乘法]
题意:竟然扯到哈利波特了....
和上一题差不多,但颜色数很少,给出不能相邻的颜色对
可以相邻的连边建图矩阵乘法求回路个数就得到$f(i)$了....
感觉这样的环上有限制问题挺套路的...旋转的等价循环个数$t$我们很清楚了,并且环上每$t$个元素各属于不同的循环,我们只要求出$t$个元素满足限制的方案数就能得到$C(f)$了
然后再加上$gcd$取值讨论就降到根号了
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
const int N=1e5+,P=;
typedef long long ll;
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-; c=getchar();}
while(c>=''&&c<=''){x=x*+c-''; c=getchar();}
return x*f;
}
int n,m,k,u,v;
int p[N];
bool notp[N];
void sieve(int n){
for(int i=;i<=n;i++){
if(!notp[i]) p[++p[]]=i;
for(int j=;j<=p[]&&i*p[j]<=n;j++){
notp[i*p[j]]=;
if(i%p[j]==) break;
}
}
}
inline int phi(int n){
int re=n,m=sqrt(n);
for(int i=;i<=p[]&&p[i]<=m&&p[i]<=n;i++) if(n%p[i]==){
re=re/p[i]*(p[i]-);
while(n%p[i]==) n/=p[i];
}
if(n>) re=re/n*(n-);
return re%P;
}
struct Matrix{
int a[][];
int* operator [](int x){return a[x];}
Matrix(){memset(a,,sizeof(a));}
void ini(){for(int i=;i<=;i++) a[i][i]=;}
}a;
Matrix operator *(Matrix a,Matrix b){
Matrix c;
for(int k=;k<=m;k++)
for(int i=;i<=m;i++) if(a[i][k])
for(int j=;j<=m;j++) if(b[k][j])
(c[i][j]+=a[i][k]*b[k][j])%=P;
return c;
}
Matrix operator ^(Matrix a,int b){
Matrix re;re.ini();
for(;b;b>>=,a=a*a)
if(b&) re=re*a;
return re;
}
inline void mod(int &x){if(x>=P) x-=P;}
int f(int x){
Matrix b=a^x;
int re=;
for(int i=;i<=m;i++) mod(re+=b[i][i]);
return re;
}
inline int Pow(int a,int b){
int re=;
a%=P;
for(;b;b>>=,a=a*a%P)
if(b&) re=re*a%P;
return re;
}
inline int Inv(int a){return Pow(a,P-);}
void solve(){
int m=sqrt(n),ans=;
for(int i=;i<=m;i++) if(n%i==){
mod(ans+= f(i)*phi(n/i)%P);
if(i*i!=n) mod(ans+= f(n/i)*phi(i)%P);
}
printf("%d\n",ans*Inv(n)%P);
}
int main(){
freopen("in","r",stdin);
sieve();
int T=read();
while(T--){
n=read();m=read();k=read();
for(int i=;i<=m;i++) for(int j=;j<=m;j++) a[i][j]=;
for(int i=;i<=k;i++){
u=read();v=read();
a[u][v]=a[v][u]=;
}
solve();
}
}
POJ 2888 Magic Bracelet [Polya 矩阵乘法]的更多相关文章
- poj 2888 Magic Bracelet(Polya+矩阵快速幂)
Magic Bracelet Time Limit: 2000MS Memory Limit: 131072K Total Submissions: 4990 Accepted: 1610 D ...
- [POJ 2888]Magic Bracelet[Polya Burnside 置换 矩阵]
也许更好的阅读体验 \(\mathcal{Description}\) 大意:给一条长度为\(n\)的项链,有\(m\)种颜色,另有\(k\)条限制,每条限制为不允许\(x,y\)颜色连在一起.要求有 ...
- poj 2888 Magic Bracelet <polya定理>
题目:http://poj.org/problem?id=2888 题意:给定n(n <= 10^9)颗珠子,组成一串项链,每颗珠子可以用m种颜色中一种来涂色,如果两种涂色方法通过旋转项链可以得 ...
- POJ 2888 Magic Bracelet(Burnside引理,矩阵优化)
Magic Bracelet Time Limit: 2000MS Memory Limit: 131072K Total Submissions: 3731 Accepted: 1227 D ...
- POJ 2888 Magic Bracelet(burnside引理+矩阵)
题意:一个长度为n的项链,m种颜色染色每个珠子.一些限制给出有些颜色珠子不能相邻.旋转后相同视为相同.有多少种不同的项链? 思路:这题有点综合,首先,我们对于每个n的因数i,都考虑这个因数i下的不变置 ...
- poj 2888 Magic Bracelet
经典的有限制条件的Burnside计数+矩阵乘法!!! 对于这种限制条件的情况我们可以通过矩阵连乘得到,先初始化矩阵array[i][j]为1.如果颜色a和颜色b不能涂在相邻的珠子, 那么array[ ...
- POJ 2888 Magic Bracelet ——Burnside引理
[题目分析] 同样是Burnside引理.但是有几种颜色是不能放在一起的. 所以DP就好了. 然后T掉 所以矩阵乘法就好了. 然后T掉 所以取模取的少一些,矩阵乘法里的取模尤其要注意,就可以了. A掉 ...
- 解题:POJ 2888 Magic Bracelet
题面 这题虽然很老了但是挺好的 仍然套Burnside引理(因为有限制你并不能套Polya定理),思路和这个题一样,问题主要是如何求方案. 思路是把放珠子的方案看成一张图,然后就巧妙的变成了一个经典的 ...
- HDU 2865 Birthday Toy [Polya 矩阵乘法]
传送门 题意: 相邻珠子不能相同,旋转等价.$n$个珠子$k$中颜色,求方案数 首先中间珠子$k$种选择,$k--$如果没有相邻不同的限制,就和$POJ\ 2154$一样了$|C(f)|=k^{\#( ...
随机推荐
- flume1.8 基础架构介绍(一)
1. 系统要求 1. Java运行环境 -- Java 1.8及以上 2. 内存 -- 足够的内存供配置的sources,channels 或者sinks使用 3. 硬盘空间 -- 足够的硬盘空间供配 ...
- 【Sql】mySQL在windows环境启动
SQL的不同版本在Windows环境启动配置方法不同,此处仅介绍 5.7.20的配置方法: 1.登录mysql官网下载windows环境下的工具压缩包 http://dev.mysql.com/dow ...
- ECharts 环形饼图 动态获取json数据
ECharts 环形饼图 动态获取json数据 效果图如下: 一.html部分 <div id="secondPieChart" style="width:100 ...
- jquery dataTimePicker日历插件(精确到小时)
效果图: 下载地址:https://github.com/WangChangyao/jquery-dataTimePicker.git <!DOCTYPE html> <h ...
- jQuery:下拉列表的联动
<%@ page language="java" import="java.util.*" pageEncoding="utf-8"% ...
- .net Core EF统一配置实体类型
一般情况需要对某个实体进行一些配置时代码如下: protected override void OnModelCreating(ModelBuilder modelBuilder) { base.On ...
- CCF系列之字符串匹配(201409-3)
试题编号:201409-3试题名称:字符串匹配时间限制: 1.0s内存限制: 256.0MB 问题描述 给出一个字符串和多行文字,在这些文字中找到字符串出现的那些行.你的程序还需支持大小写敏感选项:当 ...
- wigs的理解和应用
1. 首先了解下,Web应用的本质,大体如下: 1.浏览器发送一个HTTP请求: 2.服务器收到请求,生成一个HTML文档: 3.服务器把HTML文档作为HTTP响应的Body发送给浏览器: 4.浏览 ...
- SpringMvc4.x--Spring MVC的常用注解
//下列代码显示用到的对象public class DemoObj { private Long id; private String name; public DemoObj() { //① sup ...
- python_计算1+……+100中偶数和
如何计算1+--+100中偶数和? 1. 把奇数去掉,通过if,判断累加数除以2的余数,是否为1,判断是否是奇数 2. 通过continue 跳过对奇数的累加 #!/usr/bin/python3 d ...