二叉树的建立以及遍历的多种实现(python版)
二叉树是很重要的数据结构,在面试还是日常开发中都是很重要的角色。
首先是建立树的过程,对比C或是C++的实现来讲,其涉及到了较为复杂的指针操作,但是在面向对象的语言中,就不需要考虑指针, 内存等。首先我们需要定义一个树节点, 我们采用基于链表设计的节点, 首先定义一个数据域, 其次就是左孩子和右孩子。如下定义:
# 树节点的定义
class Node:
def __init__(self, data=-1, lchild=None, rchild=None):
self.lchild = lchild # 表示左子树
self.rchild = rchild # 表示右子树
self.data = data # 表示数据域
建立树的实现有两种,遍历建树与层次建树,这两种分别是基于堆栈和队列来实现的,先来看看最基本的递归建树。
递归建树的过程无非就是一路走到底,但是需要将节点的左右孩子节点对其余的节点相关联起来。因此,我们可以如此来实现:
def traversal_create(self, root):
data = input()
if data is "#":
return None
else:
root.data = data
root.lchild = self.traversal_create(root.lchild)
root.rchild = self.traversal_create(root.rchild)
return root
首先我们传入的参数是一个默认的节点,其data数据域为-1,然后我们接受输入的数据,赋值给节点数据域,然后就是递归了,将左右孩子节点关联起来。总体来讲,应该不难理解。
下面看看层次建树的实现,所谓层次建树其实就是基于队列的操作,利用队列先进先出的特点,每次我们访问一个节点的时候,将其存入队列中,待遍历玩当前节点的左右孩子节点,队列就弹出一个节点,之后的操作都是一样的。看看代码:
def add(self, elem):
node = Node(elem)
# 根节点
if self.root.data == -1:
self.root = node
self.myQueue.append(self.root)
else:
treeNode = self.myQueue[0] # 记录结点
if treeNode.lchild is None:
treeNode.lchild = node
self.myQueue.append(treeNode.lchild)
else:
treeNode.rchild = node
self.myQueue.append(treeNode.rchild)
self.myQueue.popleft() # 弹出已经处理好左右子树的父结点
我们输入一个数据,然后根据数据初始化一个节点,放入队列中,随后就是访问的操作了。
树的三序遍历就不用说了,基于递归的,很好理解,那么基于队列以及堆栈的的遍历呢?
对比下基于队列的建树,我们完全可以写出基于队列的遍历, 也是使用队列来存储节点,然后输出左右孩子的数据:
# 层次遍历 使用队列
def queue_tarversal(self, root):
if root is None:
return
q = deque()
q.append(root)
while q:
node = q.pop()
print(node.data)
if node.lchild is not None:
q.append(node.lchild)
else:
q.append(node.rchild)
基于堆栈的呢?联想下堆栈的特点,我们一路沿着左子树遍历下去,同时使用堆栈来存储元素,然后在弹出遍历右孩子节点:
# 使用堆栈来遍历
def stack_traversal(self, root):
if root is None:
return
mystack = []
node = root
while node or mystack:
while node:
print(node.data)
mystack.append(node)
node = node.lchild
node = mystack.pop()
node = node.rchild
数据结构是难点也是基础,不管怎么样都应该好好学习。
完整代码:
''' 二叉树的建立及实现 (递归与非递归) '''
from collections import deque # 树节点的定义
class Node:
def __init__(self, data=-1, lchild=None, rchild=None):
self.lchild = lchild # 表示左子树
self.rchild = rchild # 表示右子树
self.data = data # 表示数据域 class Create_Tree:
def __init__(self):
self.root = Node() # 表示结点
self.myQueue = deque() # 使用队列不会有太多的内存开销 # 按层次生成树
def add(self, elem):
node = Node(elem)
# 根节点
if self.root.data == -1:
self.root = node
self.myQueue.append(self.root)
else:
treeNode = self.myQueue[0] # 记录结点
if treeNode.lchild is None:
treeNode.lchild = node
self.myQueue.append(treeNode.lchild)
else:
treeNode.rchild = node
self.myQueue.append(treeNode.rchild)
self.myQueue.popleft() # 弹出已经处理好左右子树的父结点 # 递归建树
def traversal_create(self, root):
data = input()
if data is "#":
return None
else:
root.data = data
root.lchild = self.traversal_create(root.lchild)
root.rchild = self.traversal_create(root.rchild)
return root # 前序遍历输出
def digui(self, root):
if root is None:
return
print(root.data)
self.digui(root.lchild)
self.digui(root.rchild) # 使用堆栈来遍历
def stack_traversal(self, root):
if root is None:
return
mystack = []
node = root
while node or mystack:
while node:
print(node.data)
mystack.append(node)
node = node.lchild
node = mystack.pop()
node = node.rchild # 层次遍历 使用队列
def queue_tarversal(self, root):
if root is None:
return
q = deque()
q.append(root)
while q:
node = q.pop()
print(node.data)
if node.lchild is not None:
q.append(node.lchild)
else:
q.append(node.rchild) if __name__ == "__main__":
elems = range(10)
tree = Create_Tree()
for i in elems:
# 非递归建树,主要就是根据 队列FIFO的特点以及广度遍历的思路
tree.add(i) # 递归建树
# tree.traversal_create(tree.root) # 递归遍历
tree.digui(tree.root)
# 栈遍历
# tree.stack_traversal(tree.root)
二叉树的建立以及遍历的多种实现(python版)的更多相关文章
- C语言二叉树的建立与遍历
二叉树的建立和遍历都要用到递归,先暂时保存一下代码,其中主要是理解递归的思想,其它的就都好理解了.这里是三种遍历方式,其实理解一种,其它的几个就都理解了,就是打印出来的顺序不一样而已.建立和遍历的方式 ...
- 一步一步写数据结构(二叉树的建立和遍历,c++)
简述: 二叉树是十分重要的数据结构,主要用来存放数据,并且方便查找等操作,在很多地方有广泛的应用. 二叉树有很多种类,比如线索二叉树,二叉排序树,平衡二叉树等,本文写的是最基础最简单的二叉树. 思路: ...
- 二叉树的建立与遍历(c语言)入门
树其实在本质上就是一对多,链表就是一对一. 二叉树的建立: 这里的代码采用的是最粗暴的创建方法,无实际用处.但初次学习二叉树可以通过这个创建方法更好的理解二叉树. 二叉树的遍历: 遍历在大体上分为递归 ...
- 二叉树的建立与遍历(山东理工OJ)
题目描写叙述 已知一个按先序序列输入的字符序列,如abc,,de,g,,f,,,(当中逗号表示空节点).请建立二叉树并按中序和后序方式遍历二叉树,最后求出叶子节点个数和二叉树深度. 输入 输入一个长度 ...
- C语言实现二叉树的建立、遍历以及表达式的计算
实现代码 #include <stdio.h> #include <stdlib.h> #include <malloc.h> #include <ctype ...
- python实现二叉树的建立以及遍历(递归前序、中序、后序遍历,队栈前序、中序、后序、层次遍历)
#-*- coding:utf-8 -*- class Node: def __init__(self,data): self.data=data self.lchild=None self.rchi ...
- C++编程练习(8)----“二叉树的建立以及二叉树的三种遍历方式“(前序遍历、中序遍历、后续遍历)
树 利用顺序存储和链式存储的特点,可以实现树的存储结构的表示,具体表示法有很多种. 1)双亲表示法:在每个结点中,附设一个指示器指示其双亲结点在数组中的位置. 2)孩子表示法:把每个结点的孩子排列起来 ...
- 数据结构代码整理(线性表,栈,队列,串,二叉树,图的建立和遍历stl,最小生成树prim算法)。。持续更新中。。。
//归并排序递归方法实现 #include <iostream> #include <cstdio> using namespace std; #define maxn 100 ...
- 数据结构实习 - problem K 用前序中序建立二叉树并以层序遍历和后序遍历输出
用前序中序建立二叉树并以层序遍历和后序遍历输出 writer:pprp 实现过程主要是通过递归,进行分解得到结果 代码如下: #include <iostream> #include &l ...
随机推荐
- nfc开发
很多Android设备已经支持NFC(近距离无线通讯技术)了.本文就以实例的方式,为大家介绍如何在Android系统中进行NFC开发. Android NFC开发环境 使用硬件:Google Nexu ...
- TCP连接建立系列 — 客户端的端口选取和重用
主要内容:connect()时的端口选取和端口重用. 内核版本:3.15.2 我的博客:http://blog.csdn.net/zhangskd 端口选取 connect()时本地端口是如何选取的呢 ...
- Java采用JDBC的方式连接Hive(SparkSQL)
前两天,由于系统的架构设计的原因,想通过Java直接访问Hive数据库,对于我这个Java以及Hadoop平台的菜鸟来说,的确是困难重重,不过,还好是搞定了.感觉也不是很麻烦.这篇文章,作为一个感想记 ...
- UNIX环境高级编程——进程间通信概念
进程间通信 --- IPC1. 进程间通信的目的a. 数据传输: 一个进程需要将他的数据发送给另一个进程b. 资源共享: 多个进程之间共享同样的资源c. 通知事件: 一个进程需要向另一个或一组进程发送 ...
- FFmpeg深入分析(一)
最近在做一个关于监控的项目,要在iphone 客户端实现播放监控的实时视频以及录像视频.使用到了FFmpeg,看到这篇文章,写的非常不错.转自:http://blog.chinaunix.net/ui ...
- 认证模式之Digest模式
TTP协议规范的另一种认证模式是Digest模式,在HTTP1.1时被提出来,它主要是为了解决Basic模式安全问题,用于替代原来的Basic认证模式,Digest认证也是采用challenge/re ...
- JAVA之旅(八)——多态的体现,前提,好处,应用,转型,instanceof,多态中成员变量的特点,多态的案例
JAVA之旅(八)--多态的体现,前提,好处,应用,转型,instanceof,多态中成员变量的特点,多态的案例 学习是不能停止的 一.多态 我们今天又要学习一个新的概念了,就是多态,它是面向对象的第 ...
- 程序员的软实力武器-star法则
hhh 程序员的表达能力一直被诟病,尤其面试讲述自己的项目的时候 下面的star原则能够帮助你: 所谓STAR原则,即Situation(情景).Task(任务).Action(行动)和Result( ...
- java对象大小
Java对象的内存布局:对象头(Header),实例数据(Instance Data)和对齐填充(Padding) 对象头在32位系统上占用8B,64位系统上占16B. 无论是32位系统还是64位系统 ...
- E-JSON数据传输标准
简介 E-JSON的设计目标是使业务系统向浏览器端传递的JSON数据保持一致,容易被理解和处理,并兼顾传输的数据量.E-JSON依托于http协议(rfc2616)与JSON数据交换格式(rfc462 ...