题目描述

现有n盏灯,以及m个按钮。每个按钮可以同时控制这n盏灯——按下了第i个按钮,对于所有的灯都有一个效果。按下i按钮对于第j盏灯,是下面3中效果之一:如果a[i][j]为1,那么当这盏灯开了的时候,把它关上,否则不管;如果为-1的话,如果这盏灯是关的,那么把它打开,否则也不管;如果是0,无论这灯是否开,都不管。

现在这些灯都是开的,给出所有开关对所有灯的控制效果,求问最少要按几下按钮才能全部关掉。

输入格式:

前两行两个数,n m

接下来m行,每行n个数,a[i][j]表示第i个开关对第j个灯的效果。

输出格式:

一个整数,表示最少按按钮次数。如果没有任何办法使其全部关闭,输出-1

输入样例:

3

2

1 0 1

-1 1 0

输出样例#1:

2

说明

对于20%数据,输出无解可以得分。

对于20%数据,n<=5

对于20%数据,m<=20

上面的数据点可能会重叠。

对于100%数据 n<=10,m<=100


题目分析

关灯问题——状态压缩经典

所谓状态压缩

就是将问题可能遇到的每一个状态用一个唯一的二进制数表示

其复杂度一般都是指数级的

这也注定了状压类的题数据规模都不会太大

此题中我们以1表示开灯状态,0表示关灯状态

这样我们可以以一个长度为n的二进制数唯一的表示每个状态

接着就可以依靠既定的开关关系将每个状态连接起来

即将隐式图转化为显式图通过BFS最短路解决

以灯全开状态为起点

二进制为n个1 ,十进制表示为(1<< n)-1

开始枚举m个开关以得到接下来的m个状态

for(int i=1;i<=m;i++)
{
    ss=(1<< n)-1;
    for(int j=1;j<=n;j++)
    {
        if( a[i][j]==1 && (ss&(1<<j-1)) ) ss^=(1<<j-1);
        else if( a[i][j]==-1 && !(ss&(1<<j-1)) ) ss|=(1<<j-1);
    }
}

ss&(1<< j-1)此运算用以检查当前状态的第j位是否为1

1<< j-1意思是将1左移j-1位,移动后只有第j位上是1

若开关操作为1且当前状态第j位是1

ss^=(1<< j-1) 表示 1与1异或后得0

若开关操作为-1且当前状态第j位是0

ss|=(1 << j-1) 表示 1或0 后得1 (此处异或操作也对,因为1异或0得1

之后便用相同的方法在得到的每个状态上再不断搜索每个状态

由于是BFS,所以一旦某一步状态表示为0(十进制二进制的0写法都是0)

则当前步数必定是最短操作数

若遍历完所有状态都没有0,则输出-1

记得搜索过的状态要打vis标记避免重复访问


#include<iostream>
#include<vector>
#include<algorithm>
#include<queue>
#include<cstring>
#include<cstdio>
using namespace std;

int read()
{
    int f=1,x=0;
    char ss=getchar();
    while(ss<'0'||ss>'9'){if(ss=='-')f=-1;ss=getchar();}
    while(ss>='0'&&ss<='9'){x=x*10+ss-'0';ss=getchar();}
    return f*x;
}

void print(int x)
{
    if(x<0){putchar('-');x=-x;}
    if(x>9)print(x/10);
    putchar(x%10+'0');
}

int n,m;
int a[110][1010];
struct node{int s,step;};//s存储状态,step存储当前步数
bool vis[1000010];

int spfa()
{
    int ss;
    queue<node> q;
    q.push( (node) {(1<<n)-1,0} );
    vis[(1<<n)-1]=true;//以全开为初始状态,二进制为n个1,十进制如代码

    while(!q.empty())
    {
        node u=q.front();
        q.pop();
        if(u.s==0){return u.step;}//若状态为0,则返回当前步数

        for(int i=1;i<=m;i++)
        {
            ss=u.s;
            for(int j=1;j<=n;j++)//由于开关对所有灯都影响,所以每个灯都遍历
            {
                if( a[i][j]==1 && (ss&(1<<j-1)) ) ss^=(1<<j-1);
                else if( a[i][j]==-1 && !(ss&(1<<j-1)) ) ss|=(1<<j-1);
            }//位运算解释如上文本

            if(!vis[ss])//若该状态未访问,就加入队列
            {
                q.push( (node) {ss,u.step+1} );
                vis[ss]=true;
            }
        }
    }
    return -1;
}

int main()
{
    n=read();m=read();
    for(int i=1;i<=m;i++)
    for(int j=1;j<=n;j++)
    a[i][j]=read();//保存每个开关操作对灯的影响

    print(spfa());
    return 0;
}

洛谷 P2622 关灯问题II【状压DP;隐式图搜索】的更多相关文章

  1. 洛谷 P2622 关灯问题II(状压DP入门题)

    传送门 https://www.cnblogs.com/violet-acmer/p/9852294.html 题解: 相关变量解释: int n,m; ];//a[i][j] : 第i个开关对第j个 ...

  2. 关灯问题II 状压DP

    关灯问题II 状压DP \(n\)个灯,\(m\)个按钮,每个按钮都会对每个灯有不同影响,问最少多少次使灯熄完. \(n\le 10,m\le 100\) 状压DP的好题,体现了状压的基本套路与二进制 ...

  3. 洛谷 P2622 关灯问题II【状压DP】

    传送门:https://www.luogu.org/problemnew/show/P2622 题面: 题目描述 现有n盏灯,以及m个按钮.每个按钮可以同时控制这n盏灯--按下了第i个按钮,对于所有的 ...

  4. 洛谷P2622 关灯问题II

    洛谷题目链接 声明: 本篇文章不讲基础,对萌新不太友好,(我就是萌新),要学状压$dp$的请另寻,这篇文章只是便于本人查看.... 首先看到$n<=10$,就可以考虑状压了,要求最小值,所以初始 ...

  5. 【题解】洛谷P3959 [NOIP2017TG] 宝藏(状压DP+DFS)

    洛谷P3959:https://www.luogu.org/problemnew/show/P3959 前言 NOIP2017时还很弱(现在也很弱 看出来是DP 但是并不会状压DP 现在看来思路并不复 ...

  6. 洛谷 P1278 单词游戏 【状压dp】

    题目描述 Io和Ao在玩一个单词游戏. 他们轮流说出一个仅包含元音字母的单词,并且后一个单词的第一个字母必须与前一个单词的最后一个字母一致. 游戏可以从任何一个单词开始. 任何单词禁止说两遍,游戏中只 ...

  7. 洛谷P2704 [NOI2001]炮兵阵地 [状压DP]

    题目传送门 炮兵阵地 题目描述 司令部的将军们打算在N*M的网格地图上部署他们的炮兵部队.一个N*M的地图由N行M列组成,地图的每一格可能是山地(用“H” 表示),也可能是平原(用“P”表示),如下图 ...

  8. 洛谷P2761 软件补丁问题(状压DP,SPFA)

    题意 描述不清... Sol 网络流24题里面怎么会有状压dp?? 真是狗血,不过还是简单吧. 直接用$f[sta]$表示当前状态为$sta$时的最小花费 转移的时候枚举一下哪一个补丁可以搞这个状态 ...

  9. 洛谷P2831 愤怒的小鸟——贪心?状压DP

    题目:https://www.luogu.org/problemnew/show/P2831 一开始想 n^3 贪心来着: 先按 x 排个序,那么第一个不就一定要打了么? 在枚举后面某一个,和它形成一 ...

随机推荐

  1. 数据库复习总结(16)-case关键字(数据透视)

    case语法: 练习1:将性别的0.1显示为男.女 select * from StudentInfo --case:对结果集中的列进行判断 --例1:显示学生信息,性别以"男女" ...

  2. cpp - 编译过程

    预处理 E:\CppSpace\hello>g++ -o main.i -E main.cpp E:\CppSpace\hello>dir /p 驱动器 E 中的卷是 固盘-项目 卷的序列 ...

  3. 使用copy命令合并二进制文件

    CMD下的copy命令可以将一份或多份文件复制到另一个位置. 也具备连接文件的功能. 使用如下命令格式可以将多个二进制文件合并为一个二进制文件: copy  /b  file1+file2+...+f ...

  4. linkin大话数据结构--字符串,数组,list之间的互转

    在实际开发中,我们经常会用到字符串,字符数组,字符list,当然也会不可避免的进行这3者之间的互相转换. 在使用到Apache和Google下的common包,可以这样子实现: package tz. ...

  5. 开发步骤Dubbo、spring mvc、springboot、SSM开发步骤

    一.Dubbo开发步骤: 链接:https://pan.baidu.com/s/1pMPO1kf 密码:9zaa 第一: 1.创建consumer工程2.在pom.xml文件下添加配置3.添加appl ...

  6. Python笔记(七):字典、类、属性、对象实例、继承

    (一)  简单说明 字典是Python的内置数据结构,将数据与键关联(例如:姓名:张三,姓名是键,张三就是数据).例如:下面这个就是一个字典 {'姓名': '张三', '出生日期': '2899-08 ...

  7. MySQL中, 如何查询某一天, 某一月, 某一年的数据.

    今天 select * from 表名 where to_days(时间字段名) = to_days(now()); 昨天(包括昨天和今天的数据) SELECT * FROM 表名 WHERE TO_ ...

  8. fopen fclose feof fgets fetl

    fopen :Open file, or obtain information about open files 例如 fid = fopen(filename, permission)%许可包括: ...

  9. Electron 打包Mac安装包代码签名问题解决方案Could not get code signature for running application

    最近一直在做electron应用的打包,集成mac版本的自动更新时出现了问题. Error: Could not get code signature for running application ...

  10. slick对超过22个属性的表进行映射的两种办法

    版权声明:本文为博主原创文章,未经博主允许不得转载 slick是scala的一个FRM(Functional Relational Mapper)框架,即函数式的关系数据库编程工具库.使用slick不 ...