对于这种看起来就比较傻逼麻烦的题,最关键的就是想怎么巧妙的设置状态数组,使转移尽可能的简洁。

一开始我想的是f[i][j]表示到第j轮第i张牌还没有被选的概率,后来发现转移起来特别坑爹,还会有重的或漏的情况。

于是改变想法:f[i][j]表示考虑到前i张牌,还剩j轮的概率

转移也就简单了,下一张牌有两种可能,选或不选:

f[i+1][j]=f[i][j]*(1-p[i+1])^j

f[i+1][j-1]=f[i][j]*(1-(1-p[i+1])^j)

#include<cstdio>
#include<iostream>
#include<cstring>
using namespace std;
int n,r;
double po[225][140],p[225],k[225],f[225][140],ans;
int main()
{
register int i,j,T;
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&r);
for(i=1;i<=n;i++)
scanf("%lf%lf",&p[i],&k[i]);
for(i=1;i<=n;i++){
po[i][0]=1;
for(j=1;j<=r;j++)
po[i][j]=po[i][j-1]*(1-p[i]);
}
memset(f,0,sizeof(f));
f[0][r]=1; ans=0;
for(i=1;i<=n;i++)
{
for(j=0;j<=r;j++)
{
f[i][j]+=f[i-1][j]*po[i][j];
f[i][j]+=f[i-1][j+1]*(1-po[i][j+1]);
ans+=f[i-1][j+1]*(1-po[i][j+1])*k[i];
}
}
printf("%0.10lf\n",ans);
}
return 0;
}

bzoj 4008 亚瑟王 期望概率dp的更多相关文章

  1. bzoj 4008 亚瑟王 - 动态规划 - 概率与期望

    Description 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑. 他决定,在脱坑之前,最后再来打一盘亚瑟王.既然是最后一战,就一定要打得漂 亮.众所周知,亚瑟王是一 ...

  2. BZOJ4008. [HNOI2015]亚瑟王 期望概率dp

    看到这道题想什么? 一个好转移的状态由于T最多444所以把每个点控制在O(400000)以内,所以对于n和r最多乘一次因此猜f[n][r],f[r][n],首先一轮一轮的搞不好转移,那么先想一想f[n ...

  3. BZOJ 4008 亚瑟王

    Description 小K不慎被LL邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑. 他决定,在脱坑之前,最后再来打一盘亚瑟王.既然是最后一战,就一定要打得漂亮.众所周知,亚瑟王是一个看脸的游 ...

  4. 2018.10.13 bzoj4008: [HNOI2015]亚瑟王(概率dp)

    传送门 马上2点考初赛了,心里有点小紧张. 做道概率dp压压惊吧. 话说这题最开始想错了. 最开始的方法是考虑f[i][j]f[i][j]f[i][j]表示第iii轮出牌为jjj的概率. 然后用第ii ...

  5. BZOJ 4008 亚瑟王(概率DP 奥妙重重)

    题意 中文题面,就不解释了 分析 显然这道题直接求期望太麻烦,想想转化问题(这转化太神了). 定义f(i,j)f(i,j)f(i,j)表示第iii张卡总共被经过jjj次的概率,有转移方程式 f(i,j ...

  6. BZOJ [HNOI2015]亚瑟王 ——期望DP

    发现每张卡牌最后起到作用只和是否打出去了有关. 而且每张牌打出去的概率和之前的牌打出去的情况有关. 所以我们按照牌的顺序进行DP. 然后记录$i$张牌中打出$j$张的概率,然后顺便统计答案. 直接对系 ...

  7. BZOJ4008 [HNOI2015]亚瑟王 【概率dp】

    题目链接 BZOJ4008 题解 要求所有牌造成伤害的期望,就是求每一张牌发动的概率\(g[i]\) 我们发现一张牌能否发动,还与其前面的牌是否发动有关 那我们设\(f[i][j]\)表示前\(i\) ...

  8. [HNOI2015]亚瑟王(概率dp)

    题面太长了就不复制了,传送门 一道做了还是很懵逼的题目,感觉以后碰到类似的还是不会,果然HNOI题目很皮. 题解传送 补充一下吧.//感觉他的博客已经写得很好了......Orz 需要的可以两边一起看 ...

  9. 【Luogu】P3239亚瑟王(概率DP)

    题目链接 请看luogu第一篇题解 #include<cstdio> #include<algorithm> #include<cstring> #include& ...

随机推荐

  1. Reportng配置报告地址

    ant build <target name="transform"> <xslt in="./target/surefire-reports/test ...

  2. css 字体两端对齐

    我想作为一个前端工作者,总会遇到这样的场景,一个表单展示的字段标题有4个字也有2个字的时候,这样子同时存在想展示的美观一点,就需要字体两端对齐了,其实实现方式很简单,我针对其中一种来做下介绍,以后方法 ...

  3. Kotlin : Retrofit + RxAndroid + Realm

    https://jqs7.com/kotlin-retrofit-rxandroid-realm/ 原作者:Ahmed Rizwan 原文链接:Kotlin : Retrofit + RxAndroi ...

  4. Mac下的Bash配置文件冲突问题

    Mac下默认的Bash配置文件是~/.profile.有的软件安装时会生成~/.bash_profiel.有了这个文件.之前的.profiel就不会再被加载,需要手动把里面的文件内容转移到.bash_ ...

  5. 使用springmvc时静态的文件获取不到,比如说样式丢失的问题。

    当使用springmvc时前台所有的样式全部都消失不见了,查了很多资料,简单的说就是我在配置web.xml中的过滤器时将<url-pattern></url-pattern>中 ...

  6. 用Maven实现一个protobuf的Java例子

    注:试验环境在Mac Idea环境下 1. 介绍Protocol Buffers Protocal Buffers(简称protobuf)是谷歌的一项技术,用于结构化的数据序列化.反序列化,常用于RP ...

  7. 基于分支限界法的旅行商问题(TSP)一

    旅行推销员问题(英语:Travelling salesman problem, TSP)是这样一个问题:给定一系列城市和每对城市之间的距离,求解访问每一座城市一次并回到起始城市的最短回路.它是组合优化 ...

  8. 虚拟机中克隆后使用eth0

    1.修改主机名 vi /etc/sysconfig/network NETWORKING=yes HOSTNAME=mini1 1.修改ip地址以及udev记录网络规则的脚本 在CentOS中,ude ...

  9. ubuntu16+zabbix3.4+grafana环境搭建记录

    最近研究了zabbix,稍后放上环境搭建教程,建议想学习搭建的同学记得参考zabbix官网

  10. C语言 > 指向指针的指针

    Int **pt; 一个指向指针的指针: { int ** pt; //一个指向指针的指针; int *ppt; ; ppt = &a; pt = &ppt; printf(" ...