对于这种看起来就比较傻逼麻烦的题,最关键的就是想怎么巧妙的设置状态数组,使转移尽可能的简洁。

一开始我想的是f[i][j]表示到第j轮第i张牌还没有被选的概率,后来发现转移起来特别坑爹,还会有重的或漏的情况。

于是改变想法:f[i][j]表示考虑到前i张牌,还剩j轮的概率

转移也就简单了,下一张牌有两种可能,选或不选:

f[i+1][j]=f[i][j]*(1-p[i+1])^j

f[i+1][j-1]=f[i][j]*(1-(1-p[i+1])^j)

#include<cstdio>
#include<iostream>
#include<cstring>
using namespace std;
int n,r;
double po[225][140],p[225],k[225],f[225][140],ans;
int main()
{
register int i,j,T;
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&r);
for(i=1;i<=n;i++)
scanf("%lf%lf",&p[i],&k[i]);
for(i=1;i<=n;i++){
po[i][0]=1;
for(j=1;j<=r;j++)
po[i][j]=po[i][j-1]*(1-p[i]);
}
memset(f,0,sizeof(f));
f[0][r]=1; ans=0;
for(i=1;i<=n;i++)
{
for(j=0;j<=r;j++)
{
f[i][j]+=f[i-1][j]*po[i][j];
f[i][j]+=f[i-1][j+1]*(1-po[i][j+1]);
ans+=f[i-1][j+1]*(1-po[i][j+1])*k[i];
}
}
printf("%0.10lf\n",ans);
}
return 0;
}

bzoj 4008 亚瑟王 期望概率dp的更多相关文章

  1. bzoj 4008 亚瑟王 - 动态规划 - 概率与期望

    Description 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑. 他决定,在脱坑之前,最后再来打一盘亚瑟王.既然是最后一战,就一定要打得漂 亮.众所周知,亚瑟王是一 ...

  2. BZOJ4008. [HNOI2015]亚瑟王 期望概率dp

    看到这道题想什么? 一个好转移的状态由于T最多444所以把每个点控制在O(400000)以内,所以对于n和r最多乘一次因此猜f[n][r],f[r][n],首先一轮一轮的搞不好转移,那么先想一想f[n ...

  3. BZOJ 4008 亚瑟王

    Description 小K不慎被LL邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑. 他决定,在脱坑之前,最后再来打一盘亚瑟王.既然是最后一战,就一定要打得漂亮.众所周知,亚瑟王是一个看脸的游 ...

  4. 2018.10.13 bzoj4008: [HNOI2015]亚瑟王(概率dp)

    传送门 马上2点考初赛了,心里有点小紧张. 做道概率dp压压惊吧. 话说这题最开始想错了. 最开始的方法是考虑f[i][j]f[i][j]f[i][j]表示第iii轮出牌为jjj的概率. 然后用第ii ...

  5. BZOJ 4008 亚瑟王(概率DP 奥妙重重)

    题意 中文题面,就不解释了 分析 显然这道题直接求期望太麻烦,想想转化问题(这转化太神了). 定义f(i,j)f(i,j)f(i,j)表示第iii张卡总共被经过jjj次的概率,有转移方程式 f(i,j ...

  6. BZOJ [HNOI2015]亚瑟王 ——期望DP

    发现每张卡牌最后起到作用只和是否打出去了有关. 而且每张牌打出去的概率和之前的牌打出去的情况有关. 所以我们按照牌的顺序进行DP. 然后记录$i$张牌中打出$j$张的概率,然后顺便统计答案. 直接对系 ...

  7. BZOJ4008 [HNOI2015]亚瑟王 【概率dp】

    题目链接 BZOJ4008 题解 要求所有牌造成伤害的期望,就是求每一张牌发动的概率\(g[i]\) 我们发现一张牌能否发动,还与其前面的牌是否发动有关 那我们设\(f[i][j]\)表示前\(i\) ...

  8. [HNOI2015]亚瑟王(概率dp)

    题面太长了就不复制了,传送门 一道做了还是很懵逼的题目,感觉以后碰到类似的还是不会,果然HNOI题目很皮. 题解传送 补充一下吧.//感觉他的博客已经写得很好了......Orz 需要的可以两边一起看 ...

  9. 【Luogu】P3239亚瑟王(概率DP)

    题目链接 请看luogu第一篇题解 #include<cstdio> #include<algorithm> #include<cstring> #include& ...

随机推荐

  1. 锋利的Jquery摘要

    一本好书值得去反复回味 第一章: jquery中的$(document).ready(function(){})与js中的windows.onload()的比较   $(document).ready ...

  2. golang实现文字云算法

    golang实现文字云算法 项目链接 https://github.com/bangbaoshi/wordcloud 效果图 测试步骤如下 git clone https://github.com/b ...

  3. 使用 focus() 和 blur()

    <html> <head> <style type="text/css"> a:active {color:green} </style& ...

  4. 新知识:JQuery语法基础与操作

     jQuery是一个快速.简洁的JavaScript框架,是继Prototype之后又一个优秀的JavaScript代码库(或JavaScript框架).jQuery设计的宗旨是"write ...

  5. ffmpeg 时间戳处理

    视频的显示和存放原理 对于一个电影,帧是这样来显示的:I B B P.现在我们需要在显示B帧之前知道P帧中的信息.因此,帧可能会按照这样的方式来存储:IPBB.这就是为什么我们会有一个解码时间戳和一个 ...

  6. 实例解析Collections源码,Iterator和ListIterator

    比如一个视频或文章有多个页面标签设置,我们在看一篇文章或一个视频时,底部有为你推荐栏目. 如何根据这个文章或视频的标签,来实现这个推荐栏目呢. public List<VideoInfoVo&g ...

  7. html5 file upload and form data by ajax

    html5 file upload and form data by ajax 最近接了一个小活,在短时间内实现一个活动报名页面,其中遇到了文件上传. 我预期的效果是一次ajax post请求,然后在 ...

  8. python爬虫错误总结

    这几天突然想到学习爬虫,于是就从python开始,python教程瞄了两眼,就去网上找别人写的爬虫(爬音乐网站的歌曲) 磕磕绊绊中渐渐地熟悉了python中常用的库和模块. 1.python 2.x( ...

  9. nginx基本配置参数说明

    #运行用户 user nobody; #启动进程,通常设置成和cpu的数量相等 worker_processes 1; #全局错误日志及PID文件 #error_log logs/error.log; ...

  10. OCR智能识别身份信息

    本人研究了两款OCR智能识别的API,下面做详解! 第一款是百度云的OCR识别,填写配置信息,每天有五百次免费的识别次数,适合中小型客户流量可以使用.API文档:http://ai.baidu.com ...