【数据挖掘】聚类之k-means(转载)
1.算法简述
分类是指分类器(classifier)根据已标注类别的训练集,通过训练可以对未知类别的样本进行分类。分类被称为监督学习(supervised learning)。如果训练集的样本没有标注类别,那么就需要用到聚类。聚类是把相似的样本聚成一类,这种相似性通常以距离来度量。聚类被称为无监督学习(unspervised learning)。
k-means是聚类算法中常用的一种,其中k的含义是指有k个cluster。由聚类的定义可知,一个样本应距离其所属cluster的质心是最近的(相较于其他k-1个cluster)。实际上,k-means的本质是最小化目标函数:
x为样本点,c为cluster。为了表示cluster,最简单有效的是取所有样本点平均,即质心(cluster centroid);这便是取名means的来由。
k-means算法流程如下:
选取初始k个质心(通常随机选取)
循环重复直至收敛
{ 对每个样本,计算出与k个质心距离最近的那个,将其归为距离最新质心所对应的cluster
重新计算质心,当质心不再变化即为收敛
}
代码参考[1,2],结果可视化请参考[2]
import numpy as np
import scipy.spatial.distance as ssd
import matplotlib.pyplot as plt def read_file(fn):
raw_file=open(fn)
dataSet=[]
for raw_row in raw_file.readlines():
row=raw_row.strip().split('\t')
dataSet.append((float(row[0]),float(row[1]))) return np.array(dataSet) def firstCentroids(k,dataSet):
"""create the first centroids""" num_columns=dataSet.shape[1]
centroids=np.zeros((k,num_columns))
for j in range(num_columns):
minJ=min(dataSet[:,j])
rangeJ=max(dataSet[:,j])-minJ
for i in range(k):
centroids[i,j]=minJ+rangeJ*np.random.uniform(0,1)
return np.array(centroids) def kmeans(k,dataSet):
num_rows,num_columns=dataSet.shape
centroids=firstCentroids(k,dataSet) #store the cluster that the samples belong to
clusterAssment=np.zeros((num_rows,2))
clusterChanged=True
while clusterChanged:
clusterChanged=False #find the closet centroid
for i in range(num_rows):
minDis=np.inf;minIndex=-1
for j in range(k):
distance=ssd.euclidean(dataSet[i,:],centroids[j,:])
if distance<minDis:
minDis=distance;minIndex=j if(clusterAssment[i,0]!=minIndex): clusterChanged=True
clusterAssment[i,:]=minIndex,minDis**2 #update the centroid location
for cent in range(k):
ptsInCent=dataSet[np.nonzero(clusterAssment[:,0]==cent)[0]]
centroids[cent,:]=np.mean(ptsInCent,axis=0) return centroids,clusterAssment
缺点:
- k-means是局部最优,因而对初始质心的选取敏感。换句话说,选取不同的初始质心,会导致不同的分类结果(当然包括差的了)。
- 选择能达到目标函数最优的k值是非常困难的。
2. Referrence
[1] Peter Harrington, machine learning in action.
[2] zouxy09, 机器学习算法与Python实践之(五)k均值聚类(k-means).
[3] the top ten algorithm in data mining, CRC Press.
【数据挖掘】聚类之k-means(转载)的更多相关文章
- 软件——机器学习与Python,聚类,K——means
K-means是一种聚类算法: 这里运用k-means进行31个城市的分类 城市的数据保存在city.txt文件中,内容如下: BJ,2959.19,730.79,749.41,513.34,467. ...
- 【十大经典数据挖掘算法】k
[十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 引言 k-means与kNN虽 ...
- [数据挖掘] - 聚类算法:K-means算法理解及SparkCore实现
聚类算法是机器学习中的一大重要算法,也是我们掌握机器学习的必须算法,下面对聚类算法中的K-means算法做一个简单的描述: 一.概述 K-means算法属于聚类算法中的直接聚类算法.给定一个对象(或记 ...
- ML: 聚类算法-K均值聚类
基于划分方法聚类算法R包: K-均值聚类(K-means) stats::kmeans().fpc::kmeansruns() K-中心点聚类(K-Medoids) ...
- 聚类算法:K均值、凝聚层次聚类和DBSCAN
聚类分析就仅根据在数据中发现的描述对象及其关系的信息,将数据对象分组(簇).其目标是,组内的对象相互之间是相似的,而不同组中的对象是不同的.组内相似性越大,组间差别越大,聚类就越好. 先介绍下聚类的不 ...
- 常见聚类算法——K均值、凝聚层次聚类和DBSCAN比较
聚类分析就仅根据在数据中发现的描述对象及其关系的信息,将数据对象分组(簇).其目标是,组内的对象相互之间是相似的,而不同组中的对象是不同的.组内相似性越大,组间差别越大,聚类就越好. 先介绍下聚类的不 ...
- KNN 与 K - Means 算法比较
KNN K-Means 1.分类算法 聚类算法 2.监督学习 非监督学习 3.数据类型:喂给它的数据集是带label的数据,已经是完全正确的数据 喂给它的数据集是无label的数据,是杂乱无章的,经过 ...
- 【机器学习】聚类算法——K均值算法(k-means)
一.聚类 1.基于划分的聚类:k-means.k-medoids(每个类别找一个样本来代表).Clarans 2.基于层次的聚类:(1)自底向上的凝聚方法,比如Agnes (2)自上而下的分裂方法,比 ...
- 聚类之K均值聚类和EM算法
这篇博客整理K均值聚类的内容,包括: 1.K均值聚类的原理: 2.初始类中心的选择和类别数K的确定: 3.K均值聚类和EM算法.高斯混合模型的关系. 一.K均值聚类的原理 K均值聚类(K-means) ...
随机推荐
- Logger Rate Limiter -- LeetCode
Design a logger system that receive stream of messages along with its timestamps, each message shoul ...
- luogu P1122 最大子树和
题目描述 小明对数学饱有兴趣,并且是个勤奋好学的学生,总是在课后留在教室向老师请教一些问题.一天他早晨骑车去上课,路上见到一个老伯正在修剪花花草草,顿时想到了一个有关修剪花卉的问题.于是当日课后,小明 ...
- 如何隐藏 video 元素的下载按钮
1. 使用 video 元素的 ControlList API <video controls controlsList="nodownload"></video ...
- ASIHTTPRequest框架使用总结系列之阿堂教程5(上传数据)
在上篇文章中,阿堂和网友们分享了如何用ASIHTTPRequest框架下载数据的实例,本篇阿堂将数据介绍如何用ASIHTTPRequest框架上传数据的应用实例. 数据上传是通过ASIHT ...
- XCTest(二)
New tool sets are making it easier and easier to engage in genuine agile development on iOS. In part ...
- [置顶]
kubernetes资源类型--secret和Service Account
secret 概念 secret对象类型主要目的是保存和处理敏感信息/私密数据,比如密码,OAuth tokens,ssh keys等信息.将这些信息放在secret对象中比 直接放在pod或dock ...
- 64位Ubuntu 14.04 安装wps
因为wps还没有提供64位版本号的wps,13.10開始又取消了ia32-libs的支持,经过自己測试,能够使用下面命令完毕安装 sudo dpkg -i 包名 sudo apt-get -f ins ...
- EJB vs Spring
转载: Spring 自从2003年发布以来,一直是Java开源框架的奇迹之一.从2000年开始,伴随着B/S架构逐渐引入企业应用软件开发的领域,Java就逐渐成为企业应用开发的主流技术,一直到200 ...
- python实现将文件夹内所有txt文件合并成一个文件
新建一个文件夹命名为yuliao,把所有txt文件放进去就ok啦!注意路径中‘/’,windows下路径不是这样. #coding=utf-8 import os #获取目标文件夹的路径 filed ...
- 2017.9.15 mybatis批量插入后实现主键回填
参考来自:mybatis mysql 批量insert 返回主键 注意:必须要在mybatis3.3.1及其以上才能实现. 1.service List branchEntryList = (Arra ...