传送门

好神的状压dp啊

首先考虑一个性质,删掉之后的图一定是个联通图

并且每个点最多只与保留下来的那条路径上的一个点有边相连

然后设状态:\(f[s][t]\)代表当前联通块的点的状态为\(s\)和路径结尾的点\(t\)

然后考虑转移,要么拓展一个点作为路径,要么挂一个联通块到当前路径结尾的点上

代码:

#include<cstdio>
#include<algorithm>
#include<cstring>
#include<iostream>
#include<vector>
using namespace std;
void read(int &x){
char ch;bool ok;
for(ok=0,ch=getchar();!isdigit(ch);ch=getchar())if(ch=='-')ok=1;
for(x=0;isdigit(ch);x=x*10+ch-'0',ch=getchar());if(ok)x=-x;
}
#define rg register
const int maxn=1<<16;
int n,m,v[20][20];
long long ans,in[maxn],f[maxn][20];
vector<int>d[20];
int main(){
read(n),read(m);
for(rg int i=1,x,y,z;i<=m;i++){
read(x),read(y),read(z),v[x][y]=v[y][x]=z;
ans+=z;
d[x].push_back(y),d[y].push_back(x);
}
int tot=1<<n;
for(rg int i=0;i<tot;i++){
for(rg int j=1;j<=n;j++)
if(!(i&(1<<(j-1)))&&!in[i|(1<<(j-1))]){
int w=d[j].size(),sum=in[i];
for(rg int k=0;k<w;k++)
if(i&(1<<(d[j][k]-1)))sum+=v[j][d[j][k]];
in[i|(1<<(j-1))]=sum;
}
}
memset(f,-1,sizeof f);
f[1][1]=0;
for(rg int i=0;i<tot;i++)
for(rg int k=1;k<=n;k++){
if(f[i][k]==-1)continue;
if(i&(1<<(k-1))){
for(rg int j=1;j<=n;j++)
if(!(i&(1<<(j-1)))&&v[k][j])
f[i|(1<<(j-1))][j]=max(f[i][k]+v[k][j],f[i|(1<<(j-1))][j]);
int now=((tot-1)^i)|(1<<(k-1));
for(rg int j=now;j;j=(j-1)&now)
if(j&(1<<(k-1)))f[i|j][k]=max(f[i][k]+in[j],f[i|j][k]);
}
}
printf("%lld\n",ans-f[tot-1][n]);
}

AT2657 Mole and Abandoned Mine的更多相关文章

  1. Mole and Abandoned Mine

    Mole and Abandoned Mine n点m条边的无向图,删除第i条边花费c[i],问1到n只有一条路径时所需要的最小花费? \(2\le n\le 15\) . 我又A掉了一道zzs的题啦 ...

  2. AT2657 [ARC078D] Mole and Abandoned Mine

    简要题解如下: 记 \(1\) 到 \(n\) 的路径为关键路径. 注意到关键路径只有一条是解题的关键,可以思考这张图长什么样子. 不难发现关键路径上所有边均为桥,因此大致上是关键路径上每个点下面挂了 ...

  3. 题解-AtCoder ARC-078F Mole and Abandoned Mine

    problem ATC-arc078F 题意概要:给定一个 \(n\) 点 \(m\) 边简单无向图(无自环无重边),边有费用,现切去若干条边,使得从 \(1\) 到 \(n\) 有且仅有一条简单路径 ...

  4. AtCoder arc078_d Mole and Abandoned Mine

    洛谷题目页面传送门 & AtCoder题目页面传送门 给定一个无向连通带权图\(G=(V,E),|V|=n,|E|=m\)(节点从\(0\)开始编号),要删掉一些边使得节点\(0\)到\(n- ...

  5. [atARC078F]Mole and Abandoned Mine

    注意到最终图的样子可以看作一条从1到$n$的路径,以及删去这条路径上的边后,路径上的每一个点所对应的一个连通块 考虑dp,令$f_{S,i}$表示当前1到$n$路径上的最后一个点以及之前点(包括$i$ ...

  6. 【做题】arc078_f-Mole and Abandoned Mine——状压dp

    题意:给出一个\(n\)个结点的联通无向图,每条边都有边权.令删去一条边的费用为这条边的边权.求最小的费用以删去某些边使得结点\(1\)至结点\(n\)有且只有一条路径. \(n \leq 15\) ...

  7. AtCoder Regular Contest 078

    我好菜啊,ARC注定出不了F系列.要是出了说不定就橙了. C - Splitting Pile 题意:把序列分成左右两部分,使得两边和之差最小. #include<cstdio> #inc ...

  8. 【AtCoder】ARC078

    C - Splitting Pile 枚举从哪里开始分的即可 #include <bits/stdc++.h> #define fi first #define se second #de ...

  9. AtCoder刷题记录

    构造题都是神仙题 /kk ARC066C Addition and Subtraction Hard 首先要发现两个性质: 加号右边不会有括号:显然,有括号也可以被删去,答案不变. \(op_i\)和 ...

随机推荐

  1. ACM学习历程—HDU 5534 Partial Tree(动态规划)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5534 题目大意是给了n个结点,让后让构成一个树,假设每个节点的度为r1, r2, ...rn,求f(x ...

  2. wpf 样式继承

    当定义的wpf多个样式,其样式内容(属性.触发器等)有较多的重复时,可以考虑将其抽象成父样式,来提升样式代码的可维护性以及减少代码冗余. wpf 进行样式继承时,需要使用style的BasedOn属性 ...

  3. java基础知识(9)---异常

    异 常: 异常:就是不正常.程序在运行时出现的不正常情况.其实就是程序中出现的问题.这个问题按照面向对象思想进行描述,并封装成了对象.因为问题的产生有产生的原因.有问题的名称.有问题的描述等多个属性信 ...

  4. python 字典 get 小例子

    语法 get()方法语法: dict.get(key, default=None) 参数 key -- 字典中要查找的键. default -- 如果指定键的值不存在时,返回该默认值值. 返回值 返回 ...

  5. java 中Int和Integer区别以及相关示例

    Java是一个近乎纯洁的面向对象编程语言,但是为了编程的方便还是引入不是对象的基本数据类型,但是为了能够将这些基本数据类型当成对象操作,Java为每一个基本数据类型都引入了对应的包装类型(wrappe ...

  6. 洛谷-铺地毯-NOIP2011提高组复赛

    题目描述 为了准备一个独特的颁奖典礼,组织者在会场的一片矩形区域(可看做是平面直角坐标系的第一象限)铺上一些矩形地毯.一共有 n 张地毯,编号从 1 到n .现在将这些地毯按照编号从小到大的顺序平行于 ...

  7. CUDA计时

    from:http://blog.sina.com.cn/s/blog_45209f340101341e.html <1>使用cutil.h中的函数 unsigned int timer= ...

  8. 机器学习前沿热点——Deep Learning

    深度学习是机器学习研究中的一个新的领域,其动机在于建立.模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如图像.声音和文本.深度学习是无监督学习的一种. 深度学习的概念源于人工神经网络的 ...

  9. CentOS 7 安装 Zabbix 3.0

    CentOS7搭建Zabbix 一.安装数据库: 1.  安装数据库:sudo  yum  grouinstall mariadb –y 2.  启动数据库:sudo systemctl  start ...

  10. 浏览器默认标签样式总结及css初始化程序

    html中的大部分的标签都有一些糟糕的样式,有的是标签天然自带的,有的是浏览器默认设置的,我们在写网页时,这些默认的样式就会时不时的跳出来捣一下乱,搞得我们很是无奈.所以成手在写css样式时,一般都会 ...