[BZOJ1455]罗马游戏 左偏树+并查集
1455: 罗马游戏
Time Limit: 5 Sec Memory Limit: 64 MB
Submit: 2285 Solved: 994
[Submit][Status][Discuss]
Description
罗马皇帝很喜欢玩杀人游戏。 他的军队里面有n个人,每个人都是一个独立的团。最近举行了一次平面几何测试,每个人都得到了一个分数。 皇帝很喜欢平面几何,他对那些得分很低的人嗤之以鼻。他决定玩这样一个游戏。 它可以发两种命令: 1. Merger(i, j)。把i所在的团和j所在的团合并成一个团。如果i, j有一个人是死人,那么就忽略该命令。 2. Kill(i)。把i所在的团里面得分最低的人杀死。如果i这个人已经死了,这条命令就忽略。 皇帝希望他每发布一条kill命令,下面的将军就把被杀的人的分数报上来。(如果这条命令被忽略,那么就报0分)
Input
第一行一个整数n(1<=n<=1000000)。n表示士兵数,m表示总命令数。 第二行n个整数,其中第i个数表示编号为i的士兵的分数。(分数都是[0..10000]之间的整数) 第三行一个整数m(1<=m<=100000) 第3+i行描述第i条命令。命令为如下两种形式: 1. M i j 2. K i
Output
如果命令是Kill,对应的请输出被杀人的分数。(如果这个人不存在,就输出0)
Sample Input
100 90 66 99 10
7
M 1 5
K 1
K 1
M 2 3
M 3 4
K 5
K 4
Sample Output
100
0
66
HINT
部分数据如下 JudgeOnline/upload/201607/aa.rar
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<algorithm>
#define maxn 1000005
using namespace std;
int d[maxn],ls[maxn],rs[maxn],a[maxn],size[maxn],fa[maxn];
int n,m;
int find(int x) {return x==fa[x]?x:fa[x]=find(fa[x]);}
int merger(int x,int y){
if(!x) return y;
if(!y) return x;
if(a[x]>a[y]) swap(x,y);
rs[x]=merger(rs[x],y);
if(size[ls[x]]<size[rs[x]]) swap(ls[x],rs[x]);
size[x]=size[rs[x]]+;
return x; }
int main() {
scanf("%d",&n);
for(int i=;i<=n;i++) scanf("%d",&a[i]);
scanf("%d",&m);
for(int i=;i<=n;i++) fa[i]=i;
for(int i=;i<=m;i++) {
char ch[];
scanf("%s",ch);
if(ch[]=='M') {
int x,y;
scanf("%d%d",&x,&y);
if(d[x]||d[y]) continue;
int f1=find(x),f2=find(y);
if(f1!=f2) {fa[f1]=fa[f2]=merger(f1,f2);}
}
else {
int x;
scanf("%d",&x);
if(d[x]) printf("0\n");
else {
int f=find(x);d[f]=;
printf("%d\n",a[f]);
fa[f]=merger(ls[f],rs[f]);
fa[fa[f]]=fa[f];
}
}
}
}
[BZOJ1455]罗马游戏 左偏树+并查集的更多相关文章
- bzoj 1455: 罗马游戏 左偏树+并查集
1455: 罗马游戏 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 668 Solved: 247[Submit][Status] Descriptio ...
- BZOJ1455 罗马游戏 左偏树 可并堆
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1455 题意概括 n个人,2种操作. 一种是合并两个人团,一种是杀死某一个人团的最弱的人. 题解 左 ...
- 洛谷 - P1552 - 派遣 - 左偏树 - 并查集
首先把这个树建出来,然后每一次操作,只能选中一棵子树.对于树根,他的领导力水平是确定的,然后他更新答案的情况就是把他子树内薪水最少的若干个弄出来. 问题在于怎么知道一棵子树内薪水最少的若干个分别是谁. ...
- 洛谷 - P3377 - 【模板】左偏树(可并堆) - 左偏树 - 并查集
https://www.luogu.org/problemnew/show/P3377 左偏树+并查集 左偏树维护两个可合并的堆,并查集维护两个堆元素合并后可以找到正确的树根. 关键点在于删除一个堆的 ...
- 【bzoj1455】【罗马游戏】左偏树+并查集(模板)
Description 罗马皇帝很喜欢玩杀人游戏. 他的军队里面有n个人,每个人都是一个独立的团.最近举行了一次平面几何测试,每个人都得到了一个分数. 皇帝很喜欢平面几何,他对那些得分很低的人嗤之以鼻 ...
- 【BZOJ 1455】 1455: 罗马游戏 (可并堆-左偏树+并查集)
1455: 罗马游戏 Description 罗马皇帝很喜欢玩杀人游戏. 他的军队里面有n个人,每个人都是一个独立的团.最近举行了一次平面几何测试,每个人都得到了一个分数. 皇帝很喜欢平面几何,他对那 ...
- 1455: 罗马游戏[左偏树or可并堆]
1455: 罗马游戏 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 1861 Solved: 798[Submit][Status][Discuss] ...
- BZOJ 1455 罗马游戏 ——左偏树
[题目分析] 左偏树的模板题目,大概就是尽量维护树的深度保持平衡,以及尽可能的快速合并的一种堆. 感觉和启发式合并基本相同. 其实并没有快很多. 本人的左偏树代码自带大常数,借鉴请慎重 [代码] #i ...
- BZOJ 1455 罗马游戏 左偏树
题目大意:给定n个点,每一个点有一个权值,提供两种操作: 1.将两个点所在集合合并 2.将一个点所在集合的最小的点删除并输出权值 非常裸的可并堆 n<=100W 启示式合并不用想了 左偏树就是快 ...
随机推荐
- HTTP的缓存控制
1.缓存的分类: (1)缓存分为服务端侧(server side,比如 Nginx.Apache)和客户端侧(client side,比如 web browser). (2)服务端缓存又分为 代理服务 ...
- 斐波那契数列(Fibonacci) iOS
斐波那契数列Fibonacci 斐波那契数列指的是这样一个数列 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377,610,987,1597,2 ...
- Block那些事儿
1.Block底层原理实现 首先我们来看四个函数 void test1() { int a = 10; void (^block)() = ^{ NSLog(@"a is %d", ...
- linux运维笔记
一.查找大文件 sudo find / -size +100M -exec ls -lh {} \;
- HUAWEI TAG-AL00 找IMEI的过程
前几天,遇到一台华为机型,IMEI获取有问题,然后就找了一下. 以下是解决过程,权当记录一下,尽管为知笔记已经有备份了 :) 0x01: 起因 测试小哥发现,一台机型IMEI获取不全,有问题,拨号页面 ...
- 【The VC Dimension】林轩田机器学习基石
首先回顾上节课末尾引出来的VC Bound概念,对于机器学习来说,VC dimension理论到底有啥用. 三点: 1. 如果有Break Point证明是一个好的假设集合 2. 如果N足够大,那么E ...
- 珍藏版 Python 开发工程师面试试题
珍藏版 Python 开发工程师面试试题 说明:不拿到几家公司的offer,那就是卑鄙的浪费 一.Python_基础语法 1.可变与不可变类型: 2.浅拷贝与深拷贝的实现方式.区别:deepcopy如 ...
- 5.0 Genymotion安装以及基础使用
后续考虑到python+appium多设备并发执行,需要多台手机,所以这里就直接更新一个jenymotion,后续多设备执行直接用真机+模拟器操作!Genymotion第一步:百度搜索[Genymot ...
- Ubuntu 安装jdk与tomcat
1.官网下载jdk,地址:http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html ,选择 ...
- 在Ignite中使用k-最近邻(k-NN)分类算法
在本系列前面的文章中,简单介绍了一下Ignite的线性回归算法,下面会尝试另一个机器学习算法,即k-最近邻(k-NN)分类.该算法基于对象k个最近邻中最常见的类来对对象进行分类,可用于确定类成员的关系 ...