【BZOJ4596】[Shoi2016]黑暗前的幻想乡 容斥+矩阵树定理
【BZOJ4596】[Shoi2016]黑暗前的幻想乡
Description
Input
Output
Sample Input
2 3 2 4 2
5 2 1 3 1 3 2 4 1 4 3
4 2 1 3 2 4 1 4 2
Sample Output
题解:可以采用2^n的容斥原理,暴力枚举每个公司选或不选,然后将这些公司的边放到一起,用矩阵树定理求出方案数。那么答案就是:
可能全选的-至少不选1个的+至少不选2个的-。。。
#include <cstdio>
#include <cstring>
#include <iostream>
#include <vector>
using namespace std;
typedef long long ll;
const ll P=1000000007;
ll ans;
int n,S;
vector<int> pa[20],pb[20];
ll v[20][20];
inline int rd()
{
int ret=0,f=1; char gc=getchar();
while(gc<'0'||gc>'9') {if(gc=='-') f=-f; gc=getchar();}
while(gc>='0'&&gc<='9') ret=ret*10+gc-'0',gc=getchar();
return ret*f;
}
ll calc()
{
int i,j,k;
ll A,B,tmp,temp,ret=1;
memset(v,0,sizeof(v));
for(i=1;i<n;i++) if((S>>(i-1))&1) for(j=0;j<(int)pa[i].size();j++)
A=pa[i][j],B=pb[i][j],v[A][B]--,v[B][A]--,v[A][A]++,v[B][B]++;
for(i=1;i<=n;i++) for(j=1;j<=n;j++) if(v[i][j]<0) v[i][j]+=P;
for(i=1;i<n;i++)
{
for(j=i+1;j<n;j++)
{
A=v[i][i],B=v[j][i];
while(B)
{
tmp=A/B,temp=A,A=B,B=temp%B;
for(ret=P-ret,k=i;k<n;k++) v[i][k]=(v[i][k]-tmp*v[j][k]%P+P)%P,swap(v[i][k],v[j][k]);
}
}
ret=ret*v[i][i]%P;
}
return ret;
}
void dfs(int x,int f)
{
if(x==n)
{
ans=(ans+f*calc())%P;
return ;
}
S|=1<<(x-1),dfs(x+1,f);
S^=1<<(x-1),dfs(x+1,-f);
}
int main()
{
n=rd();
int i,a;
for(i=1;i<n;i++)
{
a=rd();
while(a--) pa[i].push_back(rd()),pb[i].push_back(rd());
}
dfs(1,1);
ans=(ans+P)%P;
printf("%lld",ans);
return 0;
}
【BZOJ4596】[Shoi2016]黑暗前的幻想乡 容斥+矩阵树定理的更多相关文章
- 洛谷 P4336 黑暗前的幻想乡 —— 容斥+矩阵树定理
题目:https://www.luogu.org/problemnew/show/P4336 当作考试题了,然而没想出来,呵呵. 其实不是二分图完美匹配方案数,而是矩阵树定理+容斥... 就是先放上所 ...
- 【BZOJ 4596】 4596: [Shoi2016]黑暗前的幻想乡 (容斥原理+矩阵树定理)
4596: [Shoi2016]黑暗前的幻想乡 Time Limit: 20 Sec Memory Limit: 256 MBSubmit: 324 Solved: 187 Description ...
- bzoj 4596: [Shoi2016]黑暗前的幻想乡【容斥原理+矩阵树定理】
真是简单粗暴 把矩阵树定理的运算当成黑箱好了反正我不会 这样我们就可以在O(n^3)的时间内算出一个无向图的生成树个数了 然后题目要求每个工程队选一条路,这里可以考虑容斥原理:全选的方案数-不选工程队 ...
- [ZJOI2016]小星星&[SHOI2016]黑暗前的幻想乡(容斥)
这两道题思路比较像,所以把他们放到一块. [ZJOI2016]小星星 题目描述 小Y是一个心灵手巧的女孩子,她喜欢手工制作一些小饰品.她有n颗小星星,用m条彩色的细线串了起来,每条细线连着两颗小星星. ...
- BZOJ 4596: [Shoi2016]黑暗前的幻想乡(容斥+Matrix_Tree)
传送门 解题思路 看到计数想容斥--\(from\) \(shadowice1984\)大爷.首先求出原图的生成树个数比较容易,直接上矩阵树定理,但这样会多算一点东西,会把\(n-2\)个公司的多算进 ...
- bzoj4596[Shoi2016]黑暗前的幻想乡 Matrix定理+容斥原理
4596: [Shoi2016]黑暗前的幻想乡 Time Limit: 20 Sec Memory Limit: 256 MBSubmit: 464 Solved: 264[Submit][Sta ...
- BZOJ4596: [Shoi2016]黑暗前的幻想乡
Description 四年一度的幻想乡大选开始了,最近幻想乡最大的问题是很多来历不明的妖 怪涌入了幻想乡,扰乱了幻想乡昔日的秩序.但是幻想乡的建制派妖怪(人类) 博丽灵梦和八云紫等人整日高谈所有妖怪 ...
- bzoj4596/luoguP4336 [SHOI2016]黑暗前的幻想乡(矩阵树定理,容斥)
bzoj4596/luoguP4336 [SHOI2016]黑暗前的幻想乡(矩阵树定理,容斥) bzoj Luogu 题解时间 看一看数据范围,求生成树个数毫无疑问直接上矩阵树定理. 但是要求每条边都 ...
- bzoj 4596 [Shoi2016]黑暗前的幻想乡 矩阵树定理+容斥
4596: [Shoi2016]黑暗前的幻想乡 Time Limit: 20 Sec Memory Limit: 256 MBSubmit: 559 Solved: 325[Submit][Sta ...
随机推荐
- Latex排版:CTeX winEdit 输出“系统找不到指定的文件”的解决办法)
winEdit输出“系统找不到指定的文件”,这里“指定的文件”是“TeXify.exe”等需要运行的程序,而不是当前需要编译的“.tex”文件.所以,问题的本质就是系统找不到“TeXify.exe”等 ...
- Linux-Vim常用操作
vim wangyunpeng.txt 创建一个wangyunpeng.txt文件 输入"i"进入插入模式 显示行号,需要在命令模式下输入":se nu" cp ...
- python selenium --frame
本节知识点: 多层框架或窗口的定位: switch_to_frame() switch_to_window() 智能等待: implicitly_wait() 对于一个现代的web应用,经常会出现框架 ...
- 简单的刚開始学习的人配置Android SDK+ADT+Eclipse
1.下载JDK.Android SDK和Eclipse(Eclipse 版本号最好新一些) 注意:下载的SDK最好和后面的ADT配套,否则Eclipse可能会报错. 如:SDK 21.0.1 相应 A ...
- Linux I/O复用中select poll epoll模型的介绍及其优缺点的比較
关于I/O多路复用: I/O多路复用(又被称为"事件驱动"),首先要理解的是.操作系统为你提供了一个功能.当你的某个socket可读或者可写的时候.它能够给你一个通知.这样当配合非 ...
- C#多线程方法同步
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.T ...
- linux 查看可执行文件动态链接库相关信息(转)
转自 http://blog.sina.com.cn/s/blog_67eb1f2f0100mgd8.html ldd <可执行文件名> 查看可执行文件链接了哪些 系统动态链 ...
- linux内存排查工具valgrind
官网:http://valgrind.org/info/about.html 百科介绍:http://baike.baidu.com/link?url=ZdXzff0omzoPpE_yZUlNW9lJ ...
- 在Windows7和Ubuntu上编译安装MICO
MICO是CORBA标准的一个实现.开源并且被广泛使用. 首先的首先,看用户手册,在页面"http://www.mico.org/docu.html"找到一本教材"MIC ...
- CSS学习笔记(2)--html中checkbox和radio
checkbox复选,radio单选 <!DOCTYPE html> <html lang="en"> <head> <meta char ...