传送门

Wa这次竟然不是Uva的题

Description

在一年前赢得了小镇的最佳草坪比赛后,Farm John变得很懒,再也没有修剪过草坪。现在,新一轮的最佳草坪比赛又开始了,Farm John希望能够再次夺冠。

然而,Farm John的草坪非常脏乱,因此,Farm John只能够让他的奶牛来完成这项工作。Farm John有N只排成一排的奶牛,编号为1...N。每只奶牛的效率是不同的,奶牛i的效率为E_i。

靠近的奶牛们很熟悉,因此,如果Farm John安排超过K只连续的奶牛,那么,这些奶牛就会罢工去开派对:)。因此,现在Farm John需要你的帮助,计算FJ可以得到的最大效率,并且该方案中没有连续的超过K只奶牛。

Input

第一行:空格隔开的两个整数 N 和 K

第二到 N+1 行:第 i+1 行有一个整数 E_i

Output

第一行:一个值,表示 Farm John 可以得到的最大的效率值。

Sample Input


Sample Output


Hint

n≤100000,E在int范围内。

答案可能需要使用long long存储

Solution

看这小东西长得这么别致题长成这样就差不多是个DP了。考虑状态,设计fi为考虑前i头牛的ans。

考虑这么转移:

  如果选了第i个,那么从i-k-1~i-1个之中就必须不选一个,这样就可以枚举不选的是哪一个,进行转移。

  状态转移方程为:

    fi=max{fj-1+sumi-sumj|j>=i-k-1}

  这么做的时间复杂度为O(nk),在极端情况下n和k同阶,时间复杂度达到了O(n2),于是GG。

考虑优化:

    fi=max{fj-1+sumi-sumj|j>=i-k-1}=sumi+max{fj-1-sumj}

  因为sumi是一个常数,所以转移只与j有关。于是就妥妥的单调队列。最终时间复杂度O(n),可以通过。

Code

#include<cstdio>
#include<algorithm>
#define rg register
#define ci const int
#define cl const long long int typedef long long int ll; namespace IO {
char buf[];
} template <typename T>
inline void qr(T &x) {
char ch=getchar(),lst=' ';
while(ch>''||ch<'') lst=ch,ch=getchar();
while(ch>=''&&ch<='') x=(x<<)+(x<<)+(ch^),ch=getchar();
if(lst=='-') x=-x;
} template <typename T>
inline void write(T x,const char aft,const bool pt) {
if(x<) {putchar('-');x=-x;}
int top=;
do {
IO::buf[++top]=x%+'';
x/=;
}while(x);
while(top) putchar(IO::buf[top--]);
if(pt) putchar(aft);
} template <typename T>
inline T mmax(const T _a,const T _b) {if(_b<_a) return _a;return _b;}
template <typename T>
inline T mmin(const T _a,const T _b) {if(_a>_b) return _b;return _a;}
template <typename T>
inline T mabs(const T _a) {if(_a<) return -_a;return _a;} template <typename T>
inline void mswap(T &_a,T &_b) {
T _temp=_a;_a=_b;_b=_temp;
} const int maxn = ; int n,k;
ll frog[maxn];
ll sum[maxn];
ll ans;
int que[maxn];int frt,tal; int main() {
qr(n);qr(k);
for(rg int i=;i<=n;++i) {ll &now=sum[i];qr(now);now+=sum[i-];}
for(rg int i=;i<=n;++i) {
if(frt<=tal&&i-que[frt]>k) ++frt;
rg ll ss=frog[i-]-sum[i];
while(frt<=tal&&ss>=frog[que[tal]-]-sum[que[tal]]) --tal;
que[++tal]=i;
if(i<=k) frog[i]=sum[i];
else frog[i]=sum[i]+frog[que[frt]-]-sum[que[frt]];
ans=mmax(ans,frog[i]);
}
write(ans,'\n',true);
return ;
}

Summary

1、方程复杂度太高是可以尝试对方程进行化简,说不定特殊性质就出来了。

2、找到状态难以枚举前面所有元素时,可以考虑枚举特殊点,比如本题中的断点。

【单调队列】【P2627】 修剪草坪的更多相关文章

  1. P2627 修剪草坪

    P2627 修剪草坪 题目描述 在一年前赢得了小镇的最佳草坪比赛后,Farm John变得很懒,再也没有修剪过草坪.现在,新一轮的最佳草坪比赛又开始了,Farm John希望能够再次夺冠. 然而,Fa ...

  2. 洛谷 P2627 修剪草坪 题解

    P2627 修剪草坪 题目描述 在一年前赢得了小镇的最佳草坪比赛后,Farm John变得很懒,再也没有修剪过草坪.现在,新一轮的最佳草坪比赛又开始了,Farm John希望能够再次夺冠. 然而,Fa ...

  3. P2627 修剪草坪 (单调队列优化$dp$)

    题目链接 Solution 70分很简单的DP,复杂度 O(NK). 方程如下: \[f[i][1]=max(f[j][0]+sum[i]-sum[j])\]\[f[i][0]=max(f[i-1][ ...

  4. [洛谷P2627] 修剪草坪

    传送门:>Here< 题意:不能有连续超过$k$个奶牛的一段,求最大的和 思路分析 Dp还是容易看出来的. 我的第一感觉是一维,$f[i]$表示前i头奶牛的最大效率.其实这也是可以解的,具 ...

  5. luogu P2627 修剪草坪

    传送门 单调队列优化dp板子 表示不大想写详细做法,自己看代码吧qwq (懒) 注意细节,不然就会跟我一样WA4次 // luogu-judger-enable-o2 #include<bits ...

  6. bzoj2442[Usaco2011 Open]修剪草坪 单调队列优化dp

    2442: [Usaco2011 Open]修剪草坪 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1159  Solved: 593[Submit] ...

  7. BZOJ_2343_[Usaco2011 Open]修剪草坪 _单调队列_DP

    BZOJ_2343_[Usaco2011 Open]修剪草坪 _单调队列_DP 题意: N头牛,每头牛有一个权值,选择一些牛,要求连续的不能超过k个,求选择牛的权值和最大值 分析: 先考虑暴力DP,f ...

  8. [BZOJ2442][Usaco2011 Open]修剪草坪 dp+单调队列优化

    2442: [Usaco2011 Open]修剪草坪 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1118  Solved: 569[Submit] ...

  9. BZOJ 2442: [Usaco2011 Open]修剪草坪 单调队列

    Code: #include<iostream> #include<cstdio> #include<cstring> #include<algorithm& ...

随机推荐

  1. 巧用浏览器F12调试器定位系统前后端bug

    做测试的小伙伴可能用过httpwatch,firebug,fiddler,charles等抓包(数据包)工具,但实际上除了这些还有一个简单实用并的抓包工具,那就是浏览器的F12调试器. httpwat ...

  2. git配置github链接

    1.百度git官网-下载最新版git 2.一路默认下一步安装 3.打开 git bash here 命令行 4.注册github账号(用自己的邮箱就可以,不会英文可以用谷歌翻译)注册成功后建立项目 5 ...

  3. TPO-12 C2 A problem of the TA's payroll

    TPO-12 C2 A problem of the TA's payroll payroll n. 工资单:在册职工人数:工资名单: paycheck n. 付薪水的支票,薪水 paperwork ...

  4. Unity编辑器 - 编辑器控制特效播放

    编辑器控制特效播放 Unity的动画编辑器不能预览粒子系统的播放,为了方便预览特效,设想制作一个预览特效的工具,通常一个特效有三种组件: - Animation - Animator - Partic ...

  5. Python|一文简单看懂 深度&广度 优先算法

    一.前言 以后尽量每天更新一篇,也是自己的一个学习打卡!加油!今天给大家分享的是,Python里深度/广度优先算法介绍及实现. 二.深度.广度优先算法简介 1. 深度优先搜索(DepthFirstSe ...

  6. 定时任务 linux crontab 学习整理

    1.  定时任务命令概念 crontab命令用于设置周期性被执行的指令.即设定脚本 按照规定时间执行相关的操作. 2.定时任务书写规范 *             *          *       ...

  7. 小球下落 (Dropping Balls,UVA 679)

    题目描述: 题目思路: 1.直接用数组模拟二叉树下落过程 //超时 #include <iostream> #include <cstring> using namespace ...

  8. 孤荷凌寒自学python第八十一天学习爬取图片1

    孤荷凌寒自学python第八十一天学习爬取图片1 (完整学习过程屏幕记录视频地址在文末) 通过前面十天的学习,我已经基本了解了通过requests模块来与网站服务器进行交互的方法,也知道了Beauti ...

  9. MySql优化浅析

    优化点:合理的使用索引,可以大幅度提升sql查询效率,特别查询的表的数据量大的时候,效果明显.一.引言 公司的产品XX出行上线正式运营,随着数据量的变大,司机2000+,日订单1万+,注册乘客26W+ ...

  10. DeepLearning Intro - sigmoid and shallow NN

    This is a series of Machine Learning summary note. I will combine the deep learning book with the de ...