bzoj4591 【Shoi2015】超能粒子炮·改
由Lucas定理C(n,k)=C(n/2333,k/2333)*C(n%2333,k%2333)%2333
则ans=ΣC(n,i),(i<=k)
=C(n/2333,0)*C(n%2333,0)+C(n/2333,0)*C(n%2333,1)+...+C(n/2333,0)*C(n%2333,2332)
+C(n/2333,1)*C(n%2333,0)+C(n/2333,1)*C(n%2333,1)+...+C(n/2333,1)*C(n%2333,2332)
+.....
+C(n/2333,k/2333)*C(n%2333,0)+....+C(n/2333,k/2333)*C(n%2333,k%2333)
=∑C(n/2333,j)*sum[n%2333][2332]+C(n/2333,k/2333)*sum[n%2333][k%2333],(0<=j<k/2333)
cal(n,k)=cal(n/2333,k/2333-1)*sum[n%2333][2332]+Lucas(n/2333,k/2333)*sum[n%2333][k%2333]
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#define int long long
using namespace std;
const int p=;
int T,c[p+][p+],sum[p+][p+];
int Lucas(int a,int b)
{
if(a<||b<) return ;
if(a<p&&b<p) return c[a][b];
return Lucas(a/p,b/p)*c[a%p][b%p]%p;
}
int cal(int n,int k)
{
if(k<) return ;
return (cal(n/p,k/p-)*sum[n%p][p-]+Lucas(n/p,k/p)*sum[n%p][k%p])%p;
}
void pre()
{
c[][]=;sum[][]=; for(int i=;i<p;i++) c[i][]=,sum[i][]=,sum[][i]=;
for(int i=;i<p;i++) for(int j=;j<=i;j++) c[i][j]=(c[i-][j-]+c[i-][j])%p;
for(int i=;i<p;i++) for(int j=;j<p;j++) sum[i][j]=sum[i][j-]+c[i][j];
}
signed main()
{
pre();
scanf("%lld",&T);
while(T--)
{
int n,k;
scanf("%lld%lld",&n,&k);
printf("%lld\n",cal(n,k));
}
return ;
}
bzoj4591 【Shoi2015】超能粒子炮·改的更多相关文章
- bzoj4591 [Shoi2015]超能粒子炮·改
Description 曾经发明了脑洞治疗仪&超能粒子炮的发明家SHTSC又公开了他的新发明:超能粒子炮·改--一种可以发射威力更加 强大的粒子流的神秘装置.超能粒子炮·改相比超能粒子炮,在威 ...
- [bzoj4591][Shoi2015][超能粒子炮·改] (lucas定理+组合计数)
Description 曾经发明了脑洞治疗仪&超能粒子炮的发明家SHTSC又公开了他的新发明:超能粒子炮·改--一种可以发射威力更加 强大的粒子流的神秘装置.超能粒子炮·改相比超能粒子炮,在威 ...
- [BZOJ4591][SHOI2015]超能粒子炮·改(Lucas定理+数位DP)
大组合数取模可以想到Lucas,考虑Lucas的意义,实际上是把数看成P进制计算. 于是问题变成求1~k的所有2333进制数上每一位数的组合数之积. 数位DP,f[i][0/1]表示从高到低第i位,这 ...
- BZOJ4591 SHOI2015超能粒子炮·改(卢卡斯定理+数位dp)
注意到模数很小,容易想到使用卢卡斯定理,即变成一个2333进制数各位组合数的乘积.对于k的限制容易想到数位dp.可以预处理一发2333以内的组合数及组合数前缀和,然后设f[i][0/1]为前i位是否卡 ...
- BZOJ4591——[Shoi2015]超能粒子炮·改
1.题意:求 2.分析:公式恐惧症的同学不要跑啊QAQ 根据lucas定理-- 这一步大家都能懂吧,这是浅而易见的lucas定理转化过程,将每一项拆分成两项 那么下一步,我们将同类项合并 我们观察可以 ...
- bzoj千题计划279:bzoj4591: [Shoi2015]超能粒子炮·改
http://www.lydsy.com/JudgeOnline/problem.php?id=4591 最后的式子合并同类项 #include<cstdio> #include<i ...
- bzoj4591 [Shoi2015]超能粒子炮·改——组合数学(+求阶乘逆元新姿势)
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4591 这题不是很裸啊(所以我就不会了) 得稍微推导一下,看这个博客好了:https://bl ...
- 【BZOJ4591】[SHOI2015]超能粒子炮·改 (卢卡斯定理)
[BZOJ4591][SHOI2015]超能粒子炮·改 (卢卡斯定理) 题面 BZOJ 洛谷 题解 感天动地!终于不是拓展卢卡斯了!我看到了一个模数,它是质数!!! 看着这个东西就感觉可以递归处理. ...
- bzoj4591 / P4345 [SHOI2015]超能粒子炮·改
P4345 [SHOI2015]超能粒子炮·改 题意:求$\sum_{i=1}^{k}C(n,i)\%(P=2333)$ 肯定要先拆开,不然怎么做呢(大雾) 把$C(n,i)$用$lucas$分解一下 ...
- 【BZOJ-4591】超能粒子炮·改 数论 + 组合数 + Lucas定理
4591: [Shoi2015]超能粒子炮·改 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 95 Solved: 33[Submit][Statu ...
随机推荐
- Macosx 安装 ionic 成功教程
一.首先介绍一下ionic ionic是一个用来开发混合手机应用的,开源的,免费的代码库.可以优化html.css和js的性能,构建高效的应用程序,而且还可以用于构建Sass和AngularJS的优化 ...
- 解决方法:未在本地计算机上注册“Microsoft.Jet.OLEDB.4.0”提供程序
在Windows Server 2008 x64 上部署一个Vs 2008开发的.net2.0 的asp.net web 程序,调用了office的组件来导入导出excel文件,其中托管管道模式为集成 ...
- shell
查看本机的shell有哪些 cat /etc/shells切换shell(zsh) chsh -s /bin/zsh 切换默认shell(bash) chsh -s /bin/bash
- 基于php基础语言编写的小程序之计算器
基于php基础语言编写的小程序之计算器 需求:在输入框中输入数字进行加.减.乘.除运算(html+php) 思路: 1首先要创建输入数字和运算符的输入框,数字用input的text属性,运算符用sel ...
- 【转】用C写一个简单病毒
[摘要]在分析病毒机理的基础上,用C语言写了一个小病毒作为实例,用TURBOC2.0实现. [Abstract] This paper introduce the charateristic of t ...
- GL.IssuePluginEvent 发布插件事件
Description 描述 Send a user-defined event to a native code plugin. 发送一个用户定义的事件到一个本地代码插件. Rendering in ...
- monkeyrunner 自动化测试 图片对比的实现
这个功能在网上看了好多人的代码,但是总是在image.writeToFile('D:/tmp/images/black.png','png')这一句出错.查了google的API也感觉没错呀. 后来自 ...
- 帆软报表FineReport中数据连接之Websphere配置JNDI连接
以oracle9i数据源制作的模板jndi.cpt为例来说明如何在FineReport中的Websphere配置JNDI连接.由于常用服务器的JNDI驱动过大,帆软报表FineReport中没有自带, ...
- Linux下管道编程
功能: 父进程创建一个子进程父进程负责读用户终端输入,并写入管道 子进程从管道接收字符流写入另一个文件 代码: #include <stdio.h> #include <unistd ...
- HDU3466 Proud Merchants[背包DP 条件限制]
Proud Merchants Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/65536 K (Java/Others) ...