题目链接:http://poj.org/problem?id=1759

Garland
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 2477   Accepted: 1054

Description

The New Year garland consists of N lamps attached to a common wire that hangs down on the ends to which outermost lamps are affixed. The wire sags under the weight of lamp in a particular way: each lamp is hanging at the height that is 1 millimeter lower than the average height of the two adjacent lamps.

The leftmost lamp in hanging at the height of A millimeters above the ground. You have to determine the lowest height B of the rightmost lamp so that no lamp in the garland lies on the ground though some of them may touch the ground.

You shall neglect the lamp's size in this problem. By numbering the lamps with integers from 1 to N and denoting the ith lamp height in millimeters as Hi we derive the following equations:

H1 = A 
Hi = (Hi-1 + Hi+1)/2 - 1, for all 1 < i < N 
HN = B 
Hi >= 0, for all 1 <= i <= N

The sample garland with 8 lamps that is shown on the picture has A = 15 and B = 9.75.

Input

The input file consists of a single line with two numbers N and A separated by a space. N (3 <= N <= 1000) is an integer representing the number of lamps in the garland, A (10 <= A <= 1000) is a real number representing the height of the leftmost lamp above the ground in millimeters.

Output

Write to the output file the single real number B accurate to two digits to the right of the decimal point representing the lowest possible height of the rightmost lamp.

Sample Input

692 532.81

Sample Output

446113.34

Source

 
 
 
 
题解:
  错误思路:惯性思维,一上来就想二分答案,即B点。但问题是,知道了A、B点,怎么求出中间的点呢?首先递推是推不出来的,然后就尝试用递归,看能否“先前进再返回”地求出各点,结果还是不行。后来也大概得出结论,如果要求出各个点:1)要么能推导出关于A、B点的公式直接计算;2)要么是知道相邻两个点的值,然后一路递推。公式我是推导不出来的,所以就要尝试第二种方法。所以:
1.二分第二个点,然后一路递推,直到求出B。
2.根据:H[i] = 2*H[i-1] + 2 - H[i-2] 可知,当H[i-2]固定时(对应A点已知),H[i-1]越小(对应第二个点) H[i]的值也越小。然后一直递推,最终B的值也越小。所以二分的第二个点B点具有同增同减性。
   —— 然而这个证明很牵强,因为H[i+1]越小时,应该是H[i]尽可能小, H[i-1]尽可能大。但此时H[i]、H[i-1]都是尽可能小,所以并不能说明:在第二个点越小的情况下,H[i+1]也越小,同理B点。所以也无法说明第二个点与B点具有同增同减性,那怎么证明呢?如下:
可知:H[3] = 2*H[2] + 2 - H[1] 
那么:H[4] = 2*H[3] + 2 - H[2]
得出:H[4] = 3*H[2] +6 - 2*H[1]。
一直将H[i]的式子带入H[i+1]的式子,那么得到:H[i+1] = a*H[2] + b - c*H[1], 其中a和b和c为正数。所以H[i+1]的增减性就显而易见了,因为H[1]已经确定,根据一元一方方程的特性,H[2](二分的第二个点)的值越小, H[i+1]的值也越小。所以表明了第二个点与所有点具有相同的增减性。所以,第二个点的值越小,B的值也越小。
  —— 或者,还有一个更快“目测”方法。观察:H[i] = 2*H[i-1] + 2 - H[i-2] 。 H[i-1] 的系数为2, H[i-2]的系数为1,所以H[i-1]占H[i]的权重最大,所以就可以得出:H[i] 与 H[i-1] 同增同减,一路递推。所以第二个点与B点具有同增同减性。
 
 
 
 
代码如下:
 #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <set>
#define rep(i,a,n) for(int (i) = a; (i)<=(n); (i)++)
#define ms(a,b) memset((a),(b),sizeof((a)))
using namespace std;
typedef long long LL;
const double EPS = 1e-;
const int INF = 2e9;
const LL LNF = 9e18;
const int mod = 1e9+;
const int maxn = 1e5+; int n;
double A, ans; bool test(double x1, double x2)
{
for(int i = ; i<=n; i++) //递推出每个点的高度
{
double x3 = *x2+-x1;
if(x3<=) return false; //出现负数,证明接地了, 不符合。
x1 = x2, x2 = x3;
}
ans = x2; //符合条件, 则更新答案。
return true;
} int main()
{
while(scanf("%d%lf", &n, &A)!=EOF)
{
double l = , r = A; //二分第二个点
while(l+EPS<=r)
{
double mid = (l+r)/;
if(test(A, mid))
r = mid - EPS;
else
l = mid + EPS;
}
printf("%.2f\n", ans);
}
}

POJ1759 Garland —— 二分的更多相关文章

  1. POJ 1759 Garland(二分+数学递归+坑精度)

    POJ 1759 Garland  这个题wa了27次,忘了用一个数来储存f[n-1],每次由于二分都会改变f[n-1]的值,得到的有的值不精确,直接输出f[n-1]肯定有问题. 这个题用c++交可以 ...

  2. URAL 1066 Garland 二分

    二分H2的位置,判断条件为是否有Hi < 0 #include <cstdio> #include <cstring> #include <cstdlib> ...

  3. POJ 1759 Garland(二分答案)

    [题目链接] http://poj.org/problem?id=1759 [题目大意] 有n个数字H,H[i]=(H[i-1]+H[i+1])/2-1,已知H[1],求最大H[n], 使得所有的H均 ...

  4. poj 1759 Garland (二分搜索之其他)

    Description The New Year garland consists of N lamps attached to a common wire that hangs down on th ...

  5. poj 1759 Garland

    Garland Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 2365   Accepted: 1007 Descripti ...

  6. POJ-1759 Garland---二分+数学

    题目链接: https://cn.vjudge.net/problem/POJ-1759 题目大意: N个灯泡离地H_i,满足H1 = A ,Hi = (Hi-1 + Hi+1)/2 – 1,HN = ...

  7. BZOJ1012: [JSOI2008]最大数maxnumber [线段树 | 单调栈+二分]

    1012: [JSOI2008]最大数maxnumber Time Limit: 3 Sec  Memory Limit: 162 MBSubmit: 8748  Solved: 3835[Submi ...

  8. BZOJ 2756: [SCOI2012]奇怪的游戏 [最大流 二分]

    2756: [SCOI2012]奇怪的游戏 Time Limit: 40 Sec  Memory Limit: 128 MBSubmit: 3352  Solved: 919[Submit][Stat ...

  9. 整体二分QAQ

    POJ 2104 K-th Number 时空隧道 题意: 给出一个序列,每次查询区间第k小 分析: 整体二分入门题? 代码: #include<algorithm> #include&l ...

随机推荐

  1. ngrinder的idea脚本开发环境配置

    1.安装toriseSvn,安装一定要选择comandline (默认是没选择的) 2.下载groovy,解压缩,在开发工具(ps:idea,eclipse)中设置groovy安装路径 3.在网站处创 ...

  2. 标准C程序设计七---31

    Linux应用             编程深入            语言编程 标准C程序设计七---经典C11程序设计    以下内容为阅读:    <标准C程序设计>(第7版) 作者 ...

  3. Android 获取屏幕事件的坐标

    通常情况下我们只能获取当前Activity的画面坐标,那有时候我们需要做到一种类似于c++ hook的后台运行程序能够监听到前台用户的操作并记录下来,往往这类程序都是为自动化测试服务的. Androi ...

  4. 关于内存 转载自http://blog.csdn.net/xluren/article/details/8150723

    首先感谢下原作者,写的真的非常明白,非常详细 1.预备知识—程序的内存分配 一个由C/C++编译的程序占用的内存分为以下几个部分 1.栈区(stack)— 由编译器自动分配释放 ,存放函数的参数值,局 ...

  5. R语言入门视频笔记--4--R的数据输入

    输入 R的数据输入可以大体三种: 1.键盘输出 2.从文本文件导入 3.从Excel中导入数据 一.从键盘输入 首先创建一个数据框,玩玩嘛,瞎建一个 mydata <- data.frame(a ...

  6. POJ2752 NEXT[J]特性应用利用。

    题意:求一个字符串所有的前缀和后缀相同的情况,每个情况输出长度,如 ababcababababcabab :2 4 9 18 思路:next数组应用,利用j=nxet[i],i之前与开头相同的字符串长 ...

  7. webstorm调试(一)提示css未使用的选择器Selector is never used

    一.css未使用的选择器Selector 今天写vue的时候,给动态绑定了一个class属性,然后样式里面就给了warning,看起来怪怪的,很不舒服

  8. 【转】Linux cp -a用法

    cp file1 file1-bk  ---------> 这样复制备份的话文件的属性(创建时间这些会变化) 要想不变化, cp -a  file1 file-bk  加上一个 -a 这个参数就 ...

  9. 转: 性能测试应该怎么做? (from coolshell.cn)

    转自: http://coolshell.cn/articles/17381.html 偶然间看到了阿里中间件Dubbo的性能测试报告,我觉得这份性能测试报告让人觉得做这性能测试的人根本不懂性能测试, ...

  10. Classification and logistic regression

    logistic 回归 1.问题: 在上面讨论回归问题时.讨论的结果都是连续类型.但假设要求做分类呢?即讨论结果为离散型的值. 2.解答: 假设: 当中: g(z)的图形例如以下: 由此可知:当hθ( ...