题目链接:http://poj.org/problem?id=1759

Garland
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 2477   Accepted: 1054

Description

The New Year garland consists of N lamps attached to a common wire that hangs down on the ends to which outermost lamps are affixed. The wire sags under the weight of lamp in a particular way: each lamp is hanging at the height that is 1 millimeter lower than the average height of the two adjacent lamps.

The leftmost lamp in hanging at the height of A millimeters above the ground. You have to determine the lowest height B of the rightmost lamp so that no lamp in the garland lies on the ground though some of them may touch the ground.

You shall neglect the lamp's size in this problem. By numbering the lamps with integers from 1 to N and denoting the ith lamp height in millimeters as Hi we derive the following equations:

H1 = A 
Hi = (Hi-1 + Hi+1)/2 - 1, for all 1 < i < N 
HN = B 
Hi >= 0, for all 1 <= i <= N

The sample garland with 8 lamps that is shown on the picture has A = 15 and B = 9.75.

Input

The input file consists of a single line with two numbers N and A separated by a space. N (3 <= N <= 1000) is an integer representing the number of lamps in the garland, A (10 <= A <= 1000) is a real number representing the height of the leftmost lamp above the ground in millimeters.

Output

Write to the output file the single real number B accurate to two digits to the right of the decimal point representing the lowest possible height of the rightmost lamp.

Sample Input

692 532.81

Sample Output

446113.34

Source

 
 
 
 
题解:
  错误思路:惯性思维,一上来就想二分答案,即B点。但问题是,知道了A、B点,怎么求出中间的点呢?首先递推是推不出来的,然后就尝试用递归,看能否“先前进再返回”地求出各点,结果还是不行。后来也大概得出结论,如果要求出各个点:1)要么能推导出关于A、B点的公式直接计算;2)要么是知道相邻两个点的值,然后一路递推。公式我是推导不出来的,所以就要尝试第二种方法。所以:
1.二分第二个点,然后一路递推,直到求出B。
2.根据:H[i] = 2*H[i-1] + 2 - H[i-2] 可知,当H[i-2]固定时(对应A点已知),H[i-1]越小(对应第二个点) H[i]的值也越小。然后一直递推,最终B的值也越小。所以二分的第二个点B点具有同增同减性。
   —— 然而这个证明很牵强,因为H[i+1]越小时,应该是H[i]尽可能小, H[i-1]尽可能大。但此时H[i]、H[i-1]都是尽可能小,所以并不能说明:在第二个点越小的情况下,H[i+1]也越小,同理B点。所以也无法说明第二个点与B点具有同增同减性,那怎么证明呢?如下:
可知:H[3] = 2*H[2] + 2 - H[1] 
那么:H[4] = 2*H[3] + 2 - H[2]
得出:H[4] = 3*H[2] +6 - 2*H[1]。
一直将H[i]的式子带入H[i+1]的式子,那么得到:H[i+1] = a*H[2] + b - c*H[1], 其中a和b和c为正数。所以H[i+1]的增减性就显而易见了,因为H[1]已经确定,根据一元一方方程的特性,H[2](二分的第二个点)的值越小, H[i+1]的值也越小。所以表明了第二个点与所有点具有相同的增减性。所以,第二个点的值越小,B的值也越小。
  —— 或者,还有一个更快“目测”方法。观察:H[i] = 2*H[i-1] + 2 - H[i-2] 。 H[i-1] 的系数为2, H[i-2]的系数为1,所以H[i-1]占H[i]的权重最大,所以就可以得出:H[i] 与 H[i-1] 同增同减,一路递推。所以第二个点与B点具有同增同减性。
 
 
 
 
代码如下:
 #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <set>
#define rep(i,a,n) for(int (i) = a; (i)<=(n); (i)++)
#define ms(a,b) memset((a),(b),sizeof((a)))
using namespace std;
typedef long long LL;
const double EPS = 1e-;
const int INF = 2e9;
const LL LNF = 9e18;
const int mod = 1e9+;
const int maxn = 1e5+; int n;
double A, ans; bool test(double x1, double x2)
{
for(int i = ; i<=n; i++) //递推出每个点的高度
{
double x3 = *x2+-x1;
if(x3<=) return false; //出现负数,证明接地了, 不符合。
x1 = x2, x2 = x3;
}
ans = x2; //符合条件, 则更新答案。
return true;
} int main()
{
while(scanf("%d%lf", &n, &A)!=EOF)
{
double l = , r = A; //二分第二个点
while(l+EPS<=r)
{
double mid = (l+r)/;
if(test(A, mid))
r = mid - EPS;
else
l = mid + EPS;
}
printf("%.2f\n", ans);
}
}

POJ1759 Garland —— 二分的更多相关文章

  1. POJ 1759 Garland(二分+数学递归+坑精度)

    POJ 1759 Garland  这个题wa了27次,忘了用一个数来储存f[n-1],每次由于二分都会改变f[n-1]的值,得到的有的值不精确,直接输出f[n-1]肯定有问题. 这个题用c++交可以 ...

  2. URAL 1066 Garland 二分

    二分H2的位置,判断条件为是否有Hi < 0 #include <cstdio> #include <cstring> #include <cstdlib> ...

  3. POJ 1759 Garland(二分答案)

    [题目链接] http://poj.org/problem?id=1759 [题目大意] 有n个数字H,H[i]=(H[i-1]+H[i+1])/2-1,已知H[1],求最大H[n], 使得所有的H均 ...

  4. poj 1759 Garland (二分搜索之其他)

    Description The New Year garland consists of N lamps attached to a common wire that hangs down on th ...

  5. poj 1759 Garland

    Garland Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 2365   Accepted: 1007 Descripti ...

  6. POJ-1759 Garland---二分+数学

    题目链接: https://cn.vjudge.net/problem/POJ-1759 题目大意: N个灯泡离地H_i,满足H1 = A ,Hi = (Hi-1 + Hi+1)/2 – 1,HN = ...

  7. BZOJ1012: [JSOI2008]最大数maxnumber [线段树 | 单调栈+二分]

    1012: [JSOI2008]最大数maxnumber Time Limit: 3 Sec  Memory Limit: 162 MBSubmit: 8748  Solved: 3835[Submi ...

  8. BZOJ 2756: [SCOI2012]奇怪的游戏 [最大流 二分]

    2756: [SCOI2012]奇怪的游戏 Time Limit: 40 Sec  Memory Limit: 128 MBSubmit: 3352  Solved: 919[Submit][Stat ...

  9. 整体二分QAQ

    POJ 2104 K-th Number 时空隧道 题意: 给出一个序列,每次查询区间第k小 分析: 整体二分入门题? 代码: #include<algorithm> #include&l ...

随机推荐

  1. Selenium+Chrome+PhantomJS 爬取淘宝

    https://github.com/factsbenchmarks/taobao-jingdong 一 简单铺垫 Selenium负责驱动浏览器与python对接 PhantomJS负责渲染解析Ja ...

  2. Android 网络编程之HttpURLConnection运用

    Android 网络编程之HttpURLConnection 利用HttpURLConnection对象,我们可以从网络中获取网页数据. 01 URL url = new URL("http ...

  3. C/C++怎样传递二维数组,转载自CSDN

    用二维数组作为参数传递(用二维数组处理矩阵),但是希望接受传递二维数组参数的函数可以处理任意维度的数组(希望矩阵的行数和列数都是不固定的). [以下转帖] ---------------------- ...

  4. Unity3D 对象池思想 在游戏开发中的运用

    分类:U3D 1.在王者荣耀中,每30秒小兵会出现一波,出现之后会被敌方玩家或敌方小兵销毁,一局游戏下来,小兵会被创建多次,同时也会被销毁,在游戏中,这种频繁的创建和销毁游戏对象是很损耗性能的.在游戏 ...

  5. vue搭建cli脚手架环境(出现问题及解决,主要是node版本低)

    Vue 提供了一个官方的cli,为单页面应用 (SPA) 快速搭建繁杂的脚手架. 一.vue cli脚手架 脚手架通过webpack搭建开发环境 使用ES6语法 打包压缩js为一个文件 项目文件在环境 ...

  6. LeetCode:926. 将字符串翻转到单调递增

    暴力法超时:思想:动态规划 public int minFlipsMonoIncrb(String S) { int result = S.length(); for (int i = 0; i &l ...

  7. java实现简单的算法

    排序大的分类可以分为两种:内排序和外排序.在排序过程中,全部记录存放在内存,则称为内排序,如果排序过程中需要使用外存,则称为外排序.下面讲的排序都是属于内排序. 内排序有可以分为以下几类: (1).插 ...

  8. go语言学习之路 二:变量

    说道变量,首先应该提一提关键字,因为不能把关键字当做变量来声明. 关键字: 下面列出GO语言的关键字或保留字: break default func interface select case def ...

  9. MySQL 为日期增加一个时间间隔

    set @dt = now(); select date_add(@dt, interval 1 day);   - 加1天 select date_add(@dt, interval 1 hour) ...

  10. Cesium调用Geoserver发布的 WMS、WFS服务

    1 GeoServer服务发布 1.1 WMS服务 下载GeoServer安装版安装,同时安装geopackage扩展,以备使用.使用XX地图下载器下载地图,导出成GeoPackage地图文件. (1 ...